File size: 2,793 Bytes
06a60a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52eaca3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06a60a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
##
Below is an example yaml for BF16 mixed-precision training using PyTorch Fully Sharded Data Parallism (FSDP) with CPU offloading on 8 GPUs.
<pre>
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
+distributed_type: FSDP
downcast_bf16: 'no'
dynamo_backend: 'NO'
+fsdp_config:
+  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
+  fsdp_backward_prefetch_policy: BACKWARD_PRE
+  fsdp_offload_params: true
+  fsdp_sharding_strategy: 1
+  fsdp_state_dict_type: FULL_STATE_DICT
+  fsdp_transformer_layer_cls_to_wrap: T5Block
machine_rank: 0
main_training_function: main
megatron_lm_config: {}
mixed_precision: bf16
num_machines: 1
+num_processes: 8
rdzv_backend: static
same_network: true
use_cpu: false
</pre>
##
<pre>
from accelerate import Accelerator

def main():
    accelerator = Accelerator()
-    model, optimizer, dataloader, scheduler = accelerator.prepare(
-      model, optimizer, dataloader, scheduler
-    )
+    model = accelerator.prepare(model)
+    # Optimizer can be any PyTorch optimizer class
+    optimizer = torch.optim.AdamW(params=model.parameters(), lr=lr)
+    optimizer, dataloader, scheduler = accelerator.prepare(
+      optimizer, dataloader, scheduler
+    )
    
    ...

    accelerator.unwrap_model(model).save_pretrained(
            args.output_dir,
            is_main_process=accelerator.is_main_process,
            save_function=accelerator.save,
+            state_dict=accelerator.get_state_dict(model)
    )
    ...
</pre>
##
If the YAML was generated through the `accelerate config` command:
```
accelerate launch {script_name.py} {--arg1} {--arg2} ...
```

If the YAML is saved to a `~/config.yaml` file:
```
accelerate launch --config_file ~/config.yaml {script_name.py} {--arg1} {--arg2} ...
```

Or you can use `accelerate launch` with right configuration parameters and have no `config.yaml` file:
```
accelerate launch \
    --use_fsdp \
    --num_processes=8 \
    --mixed_precision=bf16 \
    --fsdp_sharding_strategy=1 \
    --fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \
    --fsdp_transformer_layer_cls_to_wrap=T5Block \
    --fsdp_offload_params=true \
    {script_name.py} {--arg1} {--arg2} ...
```

##
For PyTorch FDSP, you need to prepare the model first **before** preparing the optimizer since FSDP will shard parameters in-place and this will break any previously initialized optimizers.

For transformer models, please use `TRANSFORMER_BASED_WRAP` auto wrap policy as shown in the config above.

##
To learn more checkout the related documentation:
- <a href="https://huggingface.co/docs/accelerate/usage_guides/fsdp" target="_blank">How to use Fully Sharded Data Parallelism</a>
- <a href="https://huggingface.co/blog/pytorch-fsdp" target="_blank">Accelerate Large Model Training using PyTorch Fully Sharded Data Parallel</a>