File size: 698 Bytes
b91e31d
 
 
 
 
 
 
 
 
 
 
 
d091751
b91e31d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
<pre>
import evaluate
metric = evaluate.load("accuracy")
for batch in train_dataloader:
    inputs, targets = batch
    inputs = inputs.to(device)
    targets = targets.to(device)
    outputs = model(inputs)
    loss = loss_function(outputs, targets)
    loss.backward()
    optimizer.step()
    scheduler.step()
    optimizer.zero_grad()

model.eval()
for batch in eval_dataloader:
    inputs, targets = batch
    inputs = inputs.to(device)
    targets = targets.to(device)
    with torch.no_grad():
        outputs = model(inputs)
    predictions = outputs.argmax(dim=-1)
    metric.add_batch(
        predictions = predictions,
        references = references
    )
print(metric.compute())</pre>