Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from markup import highlight, get_text | |
from template import get_templates | |
templates = get_templates() | |
def change(inp, textbox): | |
"""Based on an `inp`, render and highlight the appropriate code sample. | |
Args: | |
inp (`str`): | |
The input button from the interface. | |
textbox (`str`): | |
The textbox specifying the tab name from the interface. | |
Returns: | |
`tuple`: A tuple of the highlighted code diff, and the title for the section. | |
""" | |
if textbox == "base": | |
code, explanation, docs = get_text(inp, textbox) | |
if inp == "Basic": | |
return (highlight(code), "## Accelerate Code (Base Integration)", explanation, docs) | |
elif inp == "Calculating Metrics": | |
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs) | |
else: | |
return (highlight(code), f"## Accelerate Code ({inp})", explanation, docs) | |
elif textbox == "large_scale_training": | |
config, code, explanation, docs = get_text(inp, textbox) | |
return (highlight(config), highlight(code), f"## Accelerate Code ({inp})", explanation, docs) | |
default = change("Basic", "base") | |
def base_features(textbox): | |
# textbox.value = "base" | |
inp = gr.Radio( | |
["Basic", "Calculating Metrics", "Checkpointing", "Experiment Tracking", "Gradient Accumulation"], | |
label="Select a feature you would like to integrate", | |
value="Basic", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
feature = gr.Markdown("## Accelerate Code") | |
out = gr.Markdown(default[0]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Explanation") | |
explanation = gr.Markdown(default[2]) | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Documentation Links") | |
docs = gr.Markdown(default[3]) | |
inp.change(fn=change, inputs=[inp, textbox], outputs=[out, feature, explanation, docs]) | |
def large_scale_training(textbox): | |
# textbox.value = "large_scale_training" | |
inp = gr.Radio( | |
["Multi GPU", "Multi Node Multi GPU", "AWS SageMaker", "DeepSpeed", "PyTorch FSDP", "Megatron-LM"], | |
label="Select a feature you would like to integrate", | |
value="Basic", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
feature = gr.Markdown("## Accelerate Config") | |
config = gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(): | |
feature = gr.Markdown("## Accelerate Code") | |
out = gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Explanation") | |
explanation = gr.Markdown("") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("## Documentation Links") | |
docs = gr.Markdown("") | |
inp.change(fn=change, inputs=[inp, textbox], outputs=[config, out, feature, explanation, docs]) | |
# def big_model_inference(): | |
# inp = gr.Radio( | |
# ["Accelerate's Big Model Inference",], # "DeepSpeed ZeRO Stage-3 Offload" | |
# label="Select a feature you would like to integrate", | |
# value="Basic", | |
# ) | |
# with gr.Row(): | |
# with gr.Column(): | |
# feature = gr.Markdown("## Accelerate Code") | |
# out = gr.Markdown(default[0]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown(default[1]) | |
# explanation = gr.Markdown(default[2]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("## Documentation Links") | |
# docs = gr.Markdown(default[3]) | |
# inp.change(fn=change, inputs=[inp, "big_model_inference"], outputs=[out, feature, explanation, docs]) | |
# def notebook_launcher(): | |
# inp = gr.Radio( | |
# ["Colab GPU", "Colab TPU", "Kaggle GPU", "Kaggle Multi GPU", "Kaggle TPU", "Multi GPU VMs"], | |
# label="Select a feature you would like to integrate", | |
# value="Basic", | |
# ) | |
# with gr.Row(): | |
# with gr.Column(): | |
# feature = gr.Markdown("## Accelerate Code") | |
# out = gr.Markdown(default[0]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown(default[1]) | |
# explanation = gr.Markdown(default[2]) | |
# with gr.Row(): | |
# with gr.Column(): | |
# gr.Markdown("## Documentation Links") | |
# docs = gr.Markdown(default[3]) | |
# inp.change(fn=change, inputs=[inp, "notebook_launcher"], outputs=[out, feature, explanation, docs]) | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
with gr.TabItem("Simplify your code and improve efficieny"): | |
textbox = gr.Textbox(label="tab_name", visible=False, value="base") | |
base_features(textbox) | |
with gr.TabItem("Large Scale Training"): | |
textbox = gr.Textbox(label="tab_name", visible=False, value="large_scale_training") | |
large_scale_training(textbox) | |
with gr.TabItem("Big Model Inference"): | |
# big_model_inference() | |
pass | |
with gr.TabItem("Notebook Launcher Intergation"): | |
# notebook_launcher() | |
pass | |
demo.launch() | |