## Below are example yamls for using multi-gpu training with 4 GPUs on two machines (nodes) where each machine has two GPUs: On machine 1 (host):
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
+distributed_type: MULTI_GPU
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
gpu_ids: all
+machine_rank: 0
+main_process_ip: 192.168.20.1
+main_process_port: 8080
main_training_function: main
megatron_lm_config: {}
mixed_precision: 'no'
+num_machines: 2
+num_processes: 8
+rdzv_backend: static
+same_network: true
use_cpu: false
On machine 2:
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
+distributed_type: MULTI_GPU
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config: {}
gpu_ids: all
-machine_rank: 0
+machine_rank: 1
+main_process_ip: 192.168.20.1
+main_process_port: 8080
main_training_function: main
megatron_lm_config: {}
mixed_precision: 'no'
+num_machines: 2
+num_processes: 8
+rdzv_backend: static
+same_network: true
use_cpu: false
## None ## To launch a script, on each machine run one of the following variations: If the YAML was generated through the `accelerate config` command: ``` accelerate launch {script_name.py} {--arg1} {--arg2} ... ``` If the YAML is saved to a `~/config.yaml` file: ``` accelerate launch --config_file ~/config.yaml {script_name.py} {--arg1} {--arg2} ... ``` Or you can use `accelerate launch` with right configuration parameters and have no `config.yaml` file: Replace `{node_number}` with appropriate machine number (0 for host, 1+ if not). ``` accelerate launch --multi_gpu --num_machines=2 --num_processes=8 --main_process_ip="192.168.20.1" --main_process_port=8080 --machine_rank={node_number} {script_name.py} {--arg1} {--arg2} ... ``` ## When utilizing multiple machines (nodes) for training, the config file needs to know how each machine will be able to communicate (the IP address and port), how many *total* GPUs there are, and whether the current machine is either the host or a client. **Remember that you can always use the `accelerate launch` functionality, even if the code in your script does not use the `Accelerator`** ## To learn more checkout the related documentation: - Launching distributed code - The Command Line