## Run `accelerate config` and answer the questionnaire accordingly. Below is an example yaml for BF16 mixed-precision training using PyTorch FSDP with CPU offloading on 8 GPUs.
compute_environment: LOCAL_MACHINE                                                                                             
deepspeed_config: {}
distributed_type: FSDP
downcast_bf16: 'no'
dynamo_backend: 'NO'
fsdp_config:
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_backward_prefetch_policy: BACKWARD_PRE
  fsdp_offload_params: true
  fsdp_sharding_strategy: 1
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_transformer_layer_cls_to_wrap: T5Block
machine_rank: 0
main_training_function: main
megatron_lm_config: {}
mixed_precision: bf16
num_machines: 1
num_processes: 8
rdzv_backend: static
same_network: true
use_cpu: false
##
  from accelerate import Accelerator
  
+ def main():
    accelerator = Accelerator()

    model = accelerator.prepare(model)

    optimizer, training_dataloader, scheduler = accelerator.prepare(
        optimizer, training_dataloader, scheduler
    )

    for batch in training_dataloader:
        optimizer.zero_grad()
        inputs, targets = batch
        outputs = model(inputs)
        loss = loss_function(outputs, targets)
        accelerator.backward(loss)
        optimizer.step()
        scheduler.step()

    ...

+ if __name__ == "__main__":
+     main()
Launching a script using default accelerate config file looks like the following: ``` accelerate launch {script_name.py} {--arg1} {--arg2} ... ``` Alternatively, you can use `accelerate launch` with right config params for multi-gpu training as shown below ``` accelerate launch \ --use_fsdp \ --num_processes=8 \ --mixed_precision=bf16 \ --fsdp_sharding_strategy=1 \ --fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \ --fsdp_transformer_layer_cls_to_wrap=T5Block \ --fsdp_offload_params=true \ {script_name.py} {--arg1} {--arg2} ... ``` ## For PyTorch FDSP, you need to prepare the model first before preparing the optimizer since FSDP will shard parameters in-place and this will break any previously initialized optimizers. Same in outlined in the above code snippet. For transformer models, please use `TRANSFORMER_BASED_WRAP` auto wrap policy as shown in the config above. ## To learn more checkout the related documentation: - How to use FSDP - Accelerate Large Model Training using PyTorch Fully Sharded Data Parallel