HG_Llama3.2 / app.py
hgdgng's picture
Update app.py
8a0ad15 verified
# Import required libraries
import gradio as gr
import os
import torch
from transformers import AutoProcessor, MllamaForConditionalGeneration
from PIL import Image
# Set up Hugging Face authentication
hf_token = os.getenv("HF_KEY") # Get token from environment variable
if not hf_token:
raise ValueError("HF_KEY environment variable not set. Please set your Hugging Face token.")
# Model configuration and loading
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_name,
use_auth_token=hf_token,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_name, use_auth_token=hf_token)
# Define prediction function for image and text processing
def predict(image, text):
# Prepare messages
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": text}
]}
]
# Create input text
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
# Process inputs and move to device
inputs = processor(image, input_text, return_tensors="pt").to(model.device)
# Generate model response
outputs = model.generate(**inputs, max_new_tokens=100)
# Decode output
response = processor.decode(outputs[0], skip_special_tokens=True)
return response
# Setup Gradio interface
interface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil", label="Image Input"),
gr.Textbox(label="Text Input")
],
outputs=gr.Textbox(label="Output"),
title="Llama 3.2 11B Vision Instruct Demo",
description="Meta's new model that generates a response based on an image and text input."
)
# Launch the interface
interface.launch()