import gradio as gr from transformers import pipeline # Load the large language model (LLM) try: print("Loading the language model...") llm_pipeline = pipeline("text-generation", model="Llama-3.2-11B-Vision-Instruct") # You can use a different model here print("Model loaded successfully!") except Exception as e: print(f"Error loading model: {e}") llm_pipeline = None # Define the function to generate text based on input prompt def generate_text(prompt): if llm_pipeline is None: return "Error: Model not loaded." result = llm_pipeline(prompt, max_length=100, num_return_sequences=1) return result[0]['generated_text'] # Create the Gradio interface interface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=7, label="Input Prompt"), outputs="text", title="Large Language Model Text Generation", description="Enter a prompt to generate text using a large language model." ) print("Launching the Gradio interface...") # Launch the interface interface.launch()