Spaces:
Build error
Build error
Revert "Split in app & library"
Browse filesThis reverts commit a3cb5cc4a75e472669bb6f4837e80edaadfb220d.
- app.py +305 -4
- requirements.txt +1 -2
- setup.cfg +0 -17
- setup.py +0 -58
- src/rhyme_with_ai/__init__.py +0 -0
- src/rhyme_with_ai/rhyme.py +0 -67
- src/rhyme_with_ai/rhyme_generator.py +0 -181
- src/rhyme_with_ai/token_weighter.py +0 -17
- src/rhyme_with_ai/utils.py +0 -49
app.py
CHANGED
@@ -1,10 +1,17 @@
|
|
1 |
import copy
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
3 |
import streamlit as st
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from rhyme_with_ai.utils import color_new_words, sanitize
|
7 |
-
from transformers import TFAutoModelForMaskedLM, AutoTokenizer
|
8 |
|
9 |
|
10 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
@@ -93,6 +100,300 @@ def display_output(status_text, query, current_sentences, previous_sentences):
|
|
93 |
query + ",<br>" + "".join(print_sentences), unsafe_allow_html=True
|
94 |
)
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
main()
|
|
|
1 |
import copy
|
2 |
+
import functools
|
3 |
+
import itertools
|
4 |
+
import logging
|
5 |
+
import random
|
6 |
+
import string
|
7 |
+
from typing import List, Optional
|
8 |
|
9 |
+
import requests
|
10 |
+
import numpy as np
|
11 |
+
import tensorflow as tf
|
12 |
import streamlit as st
|
13 |
+
from gazpacho import Soup, get
|
14 |
+
from transformers import AutoTokenizer, TFAutoModelForMaskedLM
|
|
|
|
|
15 |
|
16 |
|
17 |
DEFAULT_QUERY = "Machines will take over the world soon"
|
|
|
100 |
query + ",<br>" + "".join(print_sentences), unsafe_allow_html=True
|
101 |
)
|
102 |
|
103 |
+
class TokenWeighter:
|
104 |
+
def __init__(self, tokenizer):
|
105 |
+
self.tokenizer_ = tokenizer
|
106 |
+
self.proba = self.get_token_proba()
|
107 |
+
|
108 |
+
def get_token_proba(self):
|
109 |
+
valid_token_mask = self._filter_short_partial(self.tokenizer_.vocab)
|
110 |
+
return valid_token_mask
|
111 |
+
|
112 |
+
def _filter_short_partial(self, vocab):
|
113 |
+
valid_token_ids = [v for k, v in vocab.items() if len(k) > 1 and "#" not in k]
|
114 |
+
is_valid = np.zeros(len(vocab.keys()))
|
115 |
+
is_valid[valid_token_ids] = 1
|
116 |
+
return is_valid
|
117 |
+
|
118 |
+
|
119 |
+
class RhymeGenerator:
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
model: TFAutoModelForMaskedLM,
|
123 |
+
tokenizer: AutoTokenizer,
|
124 |
+
token_weighter: TokenWeighter = None,
|
125 |
+
):
|
126 |
+
"""Generate rhymes.
|
127 |
+
|
128 |
+
Parameters
|
129 |
+
----------
|
130 |
+
model : Model for masked language modelling
|
131 |
+
tokenizer : Tokenizer for model
|
132 |
+
token_weighter : Class that weighs tokens
|
133 |
+
"""
|
134 |
+
|
135 |
+
self.model = model
|
136 |
+
self.tokenizer = tokenizer
|
137 |
+
if token_weighter is None:
|
138 |
+
token_weighter = TokenWeighter(tokenizer)
|
139 |
+
self.token_weighter = token_weighter
|
140 |
+
self._logger = logging.getLogger(__name__)
|
141 |
+
|
142 |
+
self.tokenized_rhymes_ = None
|
143 |
+
self.position_probas_ = None
|
144 |
+
|
145 |
+
# Easy access.
|
146 |
+
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
147 |
+
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
148 |
+
self.mask_token_id = self.tokenizer.mask_token_id
|
149 |
+
|
150 |
+
def start(self, query: str, rhyme_words: List[str]) -> None:
|
151 |
+
"""Start the sentence generator.
|
152 |
+
|
153 |
+
Parameters
|
154 |
+
----------
|
155 |
+
query : Seed sentence
|
156 |
+
rhyme_words : Rhyme words for next sentence
|
157 |
+
"""
|
158 |
+
# TODO: What if no content?
|
159 |
+
self._logger.info("Got sentence %s", query)
|
160 |
+
tokenized_rhymes = [
|
161 |
+
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
162 |
+
]
|
163 |
+
# Make same length.
|
164 |
+
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
165 |
+
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
166 |
+
)
|
167 |
+
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
168 |
+
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
169 |
+
|
170 |
+
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
171 |
+
"""Initialize the rhymes.
|
172 |
+
|
173 |
+
* Tokenize input
|
174 |
+
* Append a comma if the sentence does not end in it (might add better predictions as it
|
175 |
+
shows the two sentence parts are related)
|
176 |
+
* Make second line as long as the original
|
177 |
+
* Add a period
|
178 |
+
|
179 |
+
Parameters
|
180 |
+
----------
|
181 |
+
query : First line
|
182 |
+
rhyme_word : Last word for second line
|
183 |
+
|
184 |
+
Returns
|
185 |
+
-------
|
186 |
+
Tokenized rhyme lines
|
187 |
+
"""
|
188 |
+
|
189 |
+
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
190 |
+
rhyme_word_token_ids = self.tokenizer.encode(
|
191 |
+
rhyme_word, add_special_tokens=False
|
192 |
+
)
|
193 |
+
|
194 |
+
if query_token_ids[-1] != self.comma_token_id:
|
195 |
+
query_token_ids.append(self.comma_token_id)
|
196 |
+
|
197 |
+
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
198 |
+
return (
|
199 |
+
query_token_ids
|
200 |
+
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
201 |
+
+ rhyme_word_token_ids
|
202 |
+
+ [self.period_token_id]
|
203 |
+
)
|
204 |
+
|
205 |
+
def mutate(self):
|
206 |
+
"""Mutate the current rhymes.
|
207 |
+
|
208 |
+
Returns
|
209 |
+
-------
|
210 |
+
Mutated rhymes
|
211 |
+
"""
|
212 |
+
self.tokenized_rhymes_ = self._mutate(
|
213 |
+
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
214 |
+
)
|
215 |
+
|
216 |
+
rhymes = []
|
217 |
+
for i in range(len(self.tokenized_rhymes_)):
|
218 |
+
rhymes.append(
|
219 |
+
self.tokenizer.convert_tokens_to_string(
|
220 |
+
self.tokenizer.convert_ids_to_tokens(
|
221 |
+
self.tokenized_rhymes_[i], skip_special_tokens=True
|
222 |
+
)
|
223 |
+
)
|
224 |
+
)
|
225 |
+
return rhymes
|
226 |
+
|
227 |
+
def _mutate(
|
228 |
+
self,
|
229 |
+
tokenized_rhymes: np.ndarray,
|
230 |
+
position_probas: np.ndarray,
|
231 |
+
token_id_probas: np.ndarray,
|
232 |
+
) -> np.ndarray:
|
233 |
+
|
234 |
+
replacements = []
|
235 |
+
for i in range(tokenized_rhymes.shape[0]):
|
236 |
+
mask_idx, masked_token_ids = self._mask_token(
|
237 |
+
tokenized_rhymes[i], position_probas[i]
|
238 |
+
)
|
239 |
+
tokenized_rhymes[i] = masked_token_ids
|
240 |
+
replacements.append(mask_idx)
|
241 |
+
|
242 |
+
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
243 |
+
|
244 |
+
for i, token_ids in enumerate(tokenized_rhymes):
|
245 |
+
replace_ix = replacements[i]
|
246 |
+
token_ids[replace_ix] = self._draw_replacement(
|
247 |
+
predictions[i], token_id_probas, replace_ix
|
248 |
+
)
|
249 |
+
tokenized_rhymes[i] = token_ids
|
250 |
+
|
251 |
+
return tokenized_rhymes
|
252 |
+
|
253 |
+
def _mask_token(self, token_ids, position_probas):
|
254 |
+
"""Mask line and return index to update."""
|
255 |
+
token_ids = self._mask_repeats(token_ids, position_probas)
|
256 |
+
ix = self._locate_mask(token_ids, position_probas)
|
257 |
+
token_ids[ix] = self.mask_token_id
|
258 |
+
return ix, token_ids
|
259 |
+
|
260 |
+
def _locate_mask(self, token_ids, position_probas):
|
261 |
+
"""Update masks or a random token."""
|
262 |
+
if self.mask_token_id in token_ids:
|
263 |
+
# Already masks present, just return the last.
|
264 |
+
# We used to return thee first but this returns worse predictions.
|
265 |
+
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
266 |
+
return np.random.choice(range(len(position_probas)), p=position_probas)
|
267 |
+
|
268 |
+
def _mask_repeats(self, token_ids, position_probas):
|
269 |
+
"""Repeated tokens are generally of less quality."""
|
270 |
+
repeats = [
|
271 |
+
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
272 |
+
]
|
273 |
+
for ii in repeats:
|
274 |
+
if position_probas[ii] > 0:
|
275 |
+
token_ids[ii] = self.mask_token_id
|
276 |
+
if position_probas[ii + 1] > 0:
|
277 |
+
token_ids[ii + 1] = self.mask_token_id
|
278 |
+
return token_ids
|
279 |
+
|
280 |
+
def _predict_masked_tokens(self, tokenized_rhymes):
|
281 |
+
return self.model(tf.constant(tokenized_rhymes))[0]
|
282 |
+
|
283 |
+
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
284 |
+
"""Get probability, weigh and draw."""
|
285 |
+
# TODO (HG): Can't we softmax when calling the model?
|
286 |
+
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
287 |
+
probas /= probas.sum()
|
288 |
+
return np.random.choice(range(len(probas)), p=probas)
|
289 |
+
|
290 |
+
|
291 |
+
|
292 |
+
def query_rhyme_words(sentence: str, n_rhymes: int, language:str="english") -> List[str]:
|
293 |
+
"""Returns a list of rhyme words for a sentence.
|
294 |
+
|
295 |
+
Parameters
|
296 |
+
----------
|
297 |
+
sentence : Sentence that may end with punctuation
|
298 |
+
n_rhymes : Maximum number of rhymes to return
|
299 |
+
|
300 |
+
Returns
|
301 |
+
-------
|
302 |
+
List[str] -- List of words that rhyme with the final word
|
303 |
+
"""
|
304 |
+
last_word = find_last_word(sentence)
|
305 |
+
if language == "english":
|
306 |
+
return query_datamuse_api(last_word, n_rhymes)
|
307 |
+
elif language == "dutch":
|
308 |
+
return mick_rijmwoordenboek(last_word, n_rhymes)
|
309 |
+
else:
|
310 |
+
raise NotImplementedError(f"Unsupported language ({language}) expected 'english' or 'dutch'.")
|
311 |
+
|
312 |
+
|
313 |
+
def query_datamuse_api(word: str, n_rhymes: Optional[int] = None) -> List[str]:
|
314 |
+
"""Query the DataMuse API.
|
315 |
+
|
316 |
+
Parameters
|
317 |
+
----------
|
318 |
+
word : Word to rhyme with
|
319 |
+
n_rhymes : Max rhymes to return
|
320 |
+
|
321 |
+
Returns
|
322 |
+
-------
|
323 |
+
Rhyme words
|
324 |
+
"""
|
325 |
+
out = requests.get(
|
326 |
+
"https://api.datamuse.com/words", params={"rel_rhy": word}
|
327 |
+
).json()
|
328 |
+
words = [_["word"] for _ in out]
|
329 |
+
if n_rhymes is None:
|
330 |
+
return words
|
331 |
+
return words[:n_rhymes]
|
332 |
+
|
333 |
+
|
334 |
+
@functools.lru_cache(maxsize=128, typed=False)
|
335 |
+
def mick_rijmwoordenboek(word: str, n_words: int):
|
336 |
+
url = f"https://rijmwoordenboek.nl/rijm/{word}"
|
337 |
+
html = get(url)
|
338 |
+
soup = Soup(html)
|
339 |
+
|
340 |
+
results = soup.find("div", {"id": "rhymeResultsWords"}).html.split("<br />")
|
341 |
+
|
342 |
+
# clean up
|
343 |
+
results = [r.replace("\n", "").replace(" ", "") for r in results]
|
344 |
+
|
345 |
+
# filter html and empty strings
|
346 |
+
results = [r for r in results if ("<" not in r) and (len(r) > 0)]
|
347 |
+
|
348 |
+
return random.sample(results, min(len(results), n_words))
|
349 |
+
|
350 |
+
|
351 |
+
def color_new_words(new: str, old: str, color: str = "#eefa66") -> str:
|
352 |
+
"""Color new words in strings with a span."""
|
353 |
+
|
354 |
+
def find_diff(new_, old_):
|
355 |
+
return [ii for ii, (n, o) in enumerate(zip(new_, old_)) if n != o]
|
356 |
+
|
357 |
+
new_words = new.split()
|
358 |
+
old_words = old.split()
|
359 |
+
forward = find_diff(new_words, old_words)
|
360 |
+
backward = find_diff(new_words[::-1], old_words[::-1])
|
361 |
+
|
362 |
+
if not forward or not backward:
|
363 |
+
# No difference
|
364 |
+
return new
|
365 |
+
|
366 |
+
start, end = forward[0], len(new_words) - backward[0]
|
367 |
+
return (
|
368 |
+
" ".join(new_words[:start])
|
369 |
+
+ " "
|
370 |
+
+ f'<span style="background-color: {color}">'
|
371 |
+
+ " ".join(new_words[start:end])
|
372 |
+
+ "</span>"
|
373 |
+
+ " "
|
374 |
+
+ " ".join(new_words[end:])
|
375 |
+
)
|
376 |
+
|
377 |
+
|
378 |
+
def find_last_word(s):
|
379 |
+
"""Find the last word in a string."""
|
380 |
+
# Note: will break on \n, \r, etc.
|
381 |
+
alpha_only_sentence = "".join([c for c in s if (c.isalpha() or (c == " "))]).strip()
|
382 |
+
return alpha_only_sentence.split()[-1]
|
383 |
+
|
384 |
+
|
385 |
+
def pairwise(iterable):
|
386 |
+
"""s -> (s0,s1), (s1,s2), (s2, s3), ..."""
|
387 |
+
# https://stackoverflow.com/questions/5434891/iterate-a-list-as-pair-current-next-in-python
|
388 |
+
a, b = itertools.tee(iterable)
|
389 |
+
next(b, None)
|
390 |
+
return zip(a, b)
|
391 |
+
|
392 |
+
|
393 |
+
def sanitize(s):
|
394 |
+
"""Remove punctuation from a string."""
|
395 |
+
return s.translate(str.maketrans("", "", string.punctuation))
|
396 |
+
|
397 |
|
398 |
if __name__ == "__main__":
|
399 |
main()
|
requirements.txt
CHANGED
@@ -2,5 +2,4 @@ gazpacho
|
|
2 |
numpy
|
3 |
requests
|
4 |
tensorflow
|
5 |
-
transformers
|
6 |
-
-e .
|
|
|
2 |
numpy
|
3 |
requests
|
4 |
tensorflow
|
5 |
+
transformers
|
|
setup.cfg
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
[aliases]
|
2 |
-
test=pytest
|
3 |
-
|
4 |
-
[flake8]
|
5 |
-
max-line-length = 88
|
6 |
-
|
7 |
-
[tool:pytest]
|
8 |
-
addopts = --cov=src --cov-report=xml:test-coverage.xml --nunitxml test-output.xml -vv
|
9 |
-
|
10 |
-
[bumpversion]
|
11 |
-
current_version = 0.1
|
12 |
-
commit = True
|
13 |
-
tag = True
|
14 |
-
|
15 |
-
[bumpversion:file:setup.py]
|
16 |
-
search = version='{current_version}'
|
17 |
-
replace = version='{new_version}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
setup.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from setuptools import setup, find_packages
|
3 |
-
|
4 |
-
with open("README.md") as readme_file:
|
5 |
-
readme = readme_file.read()
|
6 |
-
|
7 |
-
requirements = [
|
8 |
-
"numpy",
|
9 |
-
"pandas",
|
10 |
-
"requests",
|
11 |
-
"tensorflow",
|
12 |
-
"transformers",
|
13 |
-
]
|
14 |
-
|
15 |
-
extra_requirements = {
|
16 |
-
"dev": [
|
17 |
-
"black",
|
18 |
-
"bump2version",
|
19 |
-
"coverage",
|
20 |
-
"gazpacho",
|
21 |
-
"twine",
|
22 |
-
"pre-commit",
|
23 |
-
"pylint",
|
24 |
-
"pytest",
|
25 |
-
]
|
26 |
-
}
|
27 |
-
|
28 |
-
setup_requirements = ["pytest-runner"]
|
29 |
-
|
30 |
-
test_requirements = ["pytest", "pytest-cov", "pytest-nunit"]
|
31 |
-
|
32 |
-
BUILD_ID = os.environ.get("BUILD_BUILDID", "0")
|
33 |
-
|
34 |
-
setup(
|
35 |
-
author="Rens Dimmendaal & Henk Griffioen",
|
36 |
-
author_email="rensdimmendaal@godatadriven.com",
|
37 |
-
classifiers=[
|
38 |
-
"Development Status :: 2 - Pre-Alpha",
|
39 |
-
"Intended Audience :: Developers",
|
40 |
-
"License :: OSI Approved :: MIT License",
|
41 |
-
"Natural Language :: English",
|
42 |
-
"Programming Language :: Python :: 3.7",
|
43 |
-
],
|
44 |
-
description="Generate text",
|
45 |
-
install_requires=requirements,
|
46 |
-
extras_require=extra_requirements,
|
47 |
-
long_description=readme,
|
48 |
-
include_package_data=True,
|
49 |
-
keywords="rhyme",
|
50 |
-
name="rhyme_with_ai",
|
51 |
-
packages=find_packages(include=["src"]),
|
52 |
-
package_dir={"": "src"},
|
53 |
-
setup_requires=setup_requirements,
|
54 |
-
test_suite="tests",
|
55 |
-
tests_require=test_requirements,
|
56 |
-
version="0.1" + "." + BUILD_ID,
|
57 |
-
zip_safe=False,
|
58 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/rhyme_with_ai/__init__.py
DELETED
File without changes
|
src/rhyme_with_ai/rhyme.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import functools
|
2 |
-
import random
|
3 |
-
from typing import List, Optional
|
4 |
-
|
5 |
-
import requests
|
6 |
-
from gazpacho import Soup, get
|
7 |
-
|
8 |
-
from rhyme_with_ai.utils import find_last_word
|
9 |
-
|
10 |
-
|
11 |
-
def query_rhyme_words(sentence: str, n_rhymes: int, language:str="english") -> List[str]:
|
12 |
-
"""Returns a list of rhyme words for a sentence.
|
13 |
-
|
14 |
-
Parameters
|
15 |
-
----------
|
16 |
-
sentence : Sentence that may end with punctuation
|
17 |
-
n_rhymes : Maximum number of rhymes to return
|
18 |
-
|
19 |
-
Returns
|
20 |
-
-------
|
21 |
-
List[str] -- List of words that rhyme with the final word
|
22 |
-
"""
|
23 |
-
last_word = find_last_word(sentence)
|
24 |
-
if language == "english":
|
25 |
-
return query_datamuse_api(last_word, n_rhymes)
|
26 |
-
elif language == "dutch":
|
27 |
-
return mick_rijmwoordenboek(last_word, n_rhymes)
|
28 |
-
else:
|
29 |
-
raise NotImplementedError(f"Unsupported language ({language}) expected 'english' or 'dutch'.")
|
30 |
-
|
31 |
-
|
32 |
-
def query_datamuse_api(word: str, n_rhymes: Optional[int] = None) -> List[str]:
|
33 |
-
"""Query the DataMuse API.
|
34 |
-
|
35 |
-
Parameters
|
36 |
-
----------
|
37 |
-
word : Word to rhyme with
|
38 |
-
n_rhymes : Max rhymes to return
|
39 |
-
|
40 |
-
Returns
|
41 |
-
-------
|
42 |
-
Rhyme words
|
43 |
-
"""
|
44 |
-
out = requests.get(
|
45 |
-
"https://api.datamuse.com/words", params={"rel_rhy": word}
|
46 |
-
).json()
|
47 |
-
words = [_["word"] for _ in out]
|
48 |
-
if n_rhymes is None:
|
49 |
-
return words
|
50 |
-
return words[:n_rhymes]
|
51 |
-
|
52 |
-
|
53 |
-
@functools.lru_cache(maxsize=128, typed=False)
|
54 |
-
def mick_rijmwoordenboek(word: str, n_words: int):
|
55 |
-
url = f"https://rijmwoordenboek.nl/rijm/{word}"
|
56 |
-
html = get(url)
|
57 |
-
soup = Soup(html)
|
58 |
-
|
59 |
-
results = soup.find("div", {"id": "rhymeResultsWords"}).html.split("<br />")
|
60 |
-
|
61 |
-
# clean up
|
62 |
-
results = [r.replace("\n", "").replace(" ", "") for r in results]
|
63 |
-
|
64 |
-
# filter html and empty strings
|
65 |
-
results = [r for r in results if ("<" not in r) and (len(r) > 0)]
|
66 |
-
|
67 |
-
return random.sample(results, min(len(results), n_words))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/rhyme_with_ai/rhyme_generator.py
DELETED
@@ -1,181 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
from typing import List
|
3 |
-
|
4 |
-
import numpy as np
|
5 |
-
import tensorflow as tf
|
6 |
-
from transformers import TFAutoModelForMaskedLM, AutoTokenizer
|
7 |
-
|
8 |
-
from rhyme_with_ai.utils import pairwise
|
9 |
-
from rhyme_with_ai.token_weighter import TokenWeighter
|
10 |
-
|
11 |
-
|
12 |
-
class RhymeGenerator:
|
13 |
-
def __init__(
|
14 |
-
self,
|
15 |
-
model: TFAutoModelForMaskedLM,
|
16 |
-
tokenizer: AutoTokenizer,
|
17 |
-
token_weighter: TokenWeighter = None,
|
18 |
-
):
|
19 |
-
"""Generate rhymes.
|
20 |
-
|
21 |
-
Parameters
|
22 |
-
----------
|
23 |
-
model : Model for masked language modelling
|
24 |
-
tokenizer : Tokenizer for model
|
25 |
-
token_weighter : Class that weighs tokens
|
26 |
-
"""
|
27 |
-
|
28 |
-
self.model = model
|
29 |
-
self.tokenizer = tokenizer
|
30 |
-
if token_weighter is None:
|
31 |
-
token_weighter = TokenWeighter(tokenizer)
|
32 |
-
self.token_weighter = token_weighter
|
33 |
-
self._logger = logging.getLogger(__name__)
|
34 |
-
|
35 |
-
self.tokenized_rhymes_ = None
|
36 |
-
self.position_probas_ = None
|
37 |
-
|
38 |
-
# Easy access.
|
39 |
-
self.comma_token_id = self.tokenizer.encode(",", add_special_tokens=False)[0]
|
40 |
-
self.period_token_id = self.tokenizer.encode(".", add_special_tokens=False)[0]
|
41 |
-
self.mask_token_id = self.tokenizer.mask_token_id
|
42 |
-
|
43 |
-
def start(self, query: str, rhyme_words: List[str]) -> None:
|
44 |
-
"""Start the sentence generator.
|
45 |
-
|
46 |
-
Parameters
|
47 |
-
----------
|
48 |
-
query : Seed sentence
|
49 |
-
rhyme_words : Rhyme words for next sentence
|
50 |
-
"""
|
51 |
-
# TODO: What if no content?
|
52 |
-
self._logger.info("Got sentence %s", query)
|
53 |
-
tokenized_rhymes = [
|
54 |
-
self._initialize_rhymes(query, rhyme_word) for rhyme_word in rhyme_words
|
55 |
-
]
|
56 |
-
# Make same length.
|
57 |
-
self.tokenized_rhymes_ = tf.keras.preprocessing.sequence.pad_sequences(
|
58 |
-
tokenized_rhymes, padding="post", value=self.tokenizer.pad_token_id
|
59 |
-
)
|
60 |
-
p = self.tokenized_rhymes_ == self.tokenizer.mask_token_id
|
61 |
-
self.position_probas_ = p / p.sum(1).reshape(-1, 1)
|
62 |
-
|
63 |
-
def _initialize_rhymes(self, query: str, rhyme_word: str) -> List[int]:
|
64 |
-
"""Initialize the rhymes.
|
65 |
-
|
66 |
-
* Tokenize input
|
67 |
-
* Append a comma if the sentence does not end in it (might add better predictions as it
|
68 |
-
shows the two sentence parts are related)
|
69 |
-
* Make second line as long as the original
|
70 |
-
* Add a period
|
71 |
-
|
72 |
-
Parameters
|
73 |
-
----------
|
74 |
-
query : First line
|
75 |
-
rhyme_word : Last word for second line
|
76 |
-
|
77 |
-
Returns
|
78 |
-
-------
|
79 |
-
Tokenized rhyme lines
|
80 |
-
"""
|
81 |
-
|
82 |
-
query_token_ids = self.tokenizer.encode(query, add_special_tokens=False)
|
83 |
-
rhyme_word_token_ids = self.tokenizer.encode(
|
84 |
-
rhyme_word, add_special_tokens=False
|
85 |
-
)
|
86 |
-
|
87 |
-
if query_token_ids[-1] != self.comma_token_id:
|
88 |
-
query_token_ids.append(self.comma_token_id)
|
89 |
-
|
90 |
-
magic_correction = len(rhyme_word_token_ids) + 1 # 1 for comma
|
91 |
-
return (
|
92 |
-
query_token_ids
|
93 |
-
+ [self.tokenizer.mask_token_id] * (len(query_token_ids) - magic_correction)
|
94 |
-
+ rhyme_word_token_ids
|
95 |
-
+ [self.period_token_id]
|
96 |
-
)
|
97 |
-
|
98 |
-
def mutate(self):
|
99 |
-
"""Mutate the current rhymes.
|
100 |
-
|
101 |
-
Returns
|
102 |
-
-------
|
103 |
-
Mutated rhymes
|
104 |
-
"""
|
105 |
-
self.tokenized_rhymes_ = self._mutate(
|
106 |
-
self.tokenized_rhymes_, self.position_probas_, self.token_weighter.proba
|
107 |
-
)
|
108 |
-
|
109 |
-
rhymes = []
|
110 |
-
for i in range(len(self.tokenized_rhymes_)):
|
111 |
-
rhymes.append(
|
112 |
-
self.tokenizer.convert_tokens_to_string(
|
113 |
-
self.tokenizer.convert_ids_to_tokens(
|
114 |
-
self.tokenized_rhymes_[i], skip_special_tokens=True
|
115 |
-
)
|
116 |
-
)
|
117 |
-
)
|
118 |
-
return rhymes
|
119 |
-
|
120 |
-
def _mutate(
|
121 |
-
self,
|
122 |
-
tokenized_rhymes: np.ndarray,
|
123 |
-
position_probas: np.ndarray,
|
124 |
-
token_id_probas: np.ndarray,
|
125 |
-
) -> np.ndarray:
|
126 |
-
|
127 |
-
replacements = []
|
128 |
-
for i in range(tokenized_rhymes.shape[0]):
|
129 |
-
mask_idx, masked_token_ids = self._mask_token(
|
130 |
-
tokenized_rhymes[i], position_probas[i]
|
131 |
-
)
|
132 |
-
tokenized_rhymes[i] = masked_token_ids
|
133 |
-
replacements.append(mask_idx)
|
134 |
-
|
135 |
-
predictions = self._predict_masked_tokens(tokenized_rhymes)
|
136 |
-
|
137 |
-
for i, token_ids in enumerate(tokenized_rhymes):
|
138 |
-
replace_ix = replacements[i]
|
139 |
-
token_ids[replace_ix] = self._draw_replacement(
|
140 |
-
predictions[i], token_id_probas, replace_ix
|
141 |
-
)
|
142 |
-
tokenized_rhymes[i] = token_ids
|
143 |
-
|
144 |
-
return tokenized_rhymes
|
145 |
-
|
146 |
-
def _mask_token(self, token_ids, position_probas):
|
147 |
-
"""Mask line and return index to update."""
|
148 |
-
token_ids = self._mask_repeats(token_ids, position_probas)
|
149 |
-
ix = self._locate_mask(token_ids, position_probas)
|
150 |
-
token_ids[ix] = self.mask_token_id
|
151 |
-
return ix, token_ids
|
152 |
-
|
153 |
-
def _locate_mask(self, token_ids, position_probas):
|
154 |
-
"""Update masks or a random token."""
|
155 |
-
if self.mask_token_id in token_ids:
|
156 |
-
# Already masks present, just return the last.
|
157 |
-
# We used to return thee first but this returns worse predictions.
|
158 |
-
return np.where(token_ids == self.tokenizer.mask_token_id)[0][-1]
|
159 |
-
return np.random.choice(range(len(position_probas)), p=position_probas)
|
160 |
-
|
161 |
-
def _mask_repeats(self, token_ids, position_probas):
|
162 |
-
"""Repeated tokens are generally of less quality."""
|
163 |
-
repeats = [
|
164 |
-
ii for ii, ids in enumerate(pairwise(token_ids[:-2])) if ids[0] == ids[1]
|
165 |
-
]
|
166 |
-
for ii in repeats:
|
167 |
-
if position_probas[ii] > 0:
|
168 |
-
token_ids[ii] = self.mask_token_id
|
169 |
-
if position_probas[ii + 1] > 0:
|
170 |
-
token_ids[ii + 1] = self.mask_token_id
|
171 |
-
return token_ids
|
172 |
-
|
173 |
-
def _predict_masked_tokens(self, tokenized_rhymes):
|
174 |
-
return self.model(tf.constant(tokenized_rhymes))[0]
|
175 |
-
|
176 |
-
def _draw_replacement(self, predictions, token_probas, replace_ix):
|
177 |
-
"""Get probability, weigh and draw."""
|
178 |
-
# TODO (HG): Can't we softmax when calling the model?
|
179 |
-
probas = tf.nn.softmax(predictions[replace_ix]).numpy() * token_probas
|
180 |
-
probas /= probas.sum()
|
181 |
-
return np.random.choice(range(len(probas)), p=probas)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/rhyme_with_ai/token_weighter.py
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
|
3 |
-
|
4 |
-
class TokenWeighter:
|
5 |
-
def __init__(self, tokenizer):
|
6 |
-
self.tokenizer_ = tokenizer
|
7 |
-
self.proba = self.get_token_proba()
|
8 |
-
|
9 |
-
def get_token_proba(self):
|
10 |
-
valid_token_mask = self._filter_short_partial(self.tokenizer_.vocab)
|
11 |
-
return valid_token_mask
|
12 |
-
|
13 |
-
def _filter_short_partial(self, vocab):
|
14 |
-
valid_token_ids = [v for k, v in vocab.items() if len(k) > 1 and "#" not in k]
|
15 |
-
is_valid = np.zeros(len(vocab.keys()))
|
16 |
-
is_valid[valid_token_ids] = 1
|
17 |
-
return is_valid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/rhyme_with_ai/utils.py
DELETED
@@ -1,49 +0,0 @@
|
|
1 |
-
import itertools
|
2 |
-
import string
|
3 |
-
|
4 |
-
|
5 |
-
def color_new_words(new: str, old: str, color: str = "#eefa66") -> str:
|
6 |
-
"""Color new words in strings with a span."""
|
7 |
-
|
8 |
-
def find_diff(new_, old_):
|
9 |
-
return [ii for ii, (n, o) in enumerate(zip(new_, old_)) if n != o]
|
10 |
-
|
11 |
-
new_words = new.split()
|
12 |
-
old_words = old.split()
|
13 |
-
forward = find_diff(new_words, old_words)
|
14 |
-
backward = find_diff(new_words[::-1], old_words[::-1])
|
15 |
-
|
16 |
-
if not forward or not backward:
|
17 |
-
# No difference
|
18 |
-
return new
|
19 |
-
|
20 |
-
start, end = forward[0], len(new_words) - backward[0]
|
21 |
-
return (
|
22 |
-
" ".join(new_words[:start])
|
23 |
-
+ " "
|
24 |
-
+ f'<span style="background-color: {color}">'
|
25 |
-
+ " ".join(new_words[start:end])
|
26 |
-
+ "</span>"
|
27 |
-
+ " "
|
28 |
-
+ " ".join(new_words[end:])
|
29 |
-
)
|
30 |
-
|
31 |
-
|
32 |
-
def find_last_word(s):
|
33 |
-
"""Find the last word in a string."""
|
34 |
-
# Note: will break on \n, \r, etc.
|
35 |
-
alpha_only_sentence = "".join([c for c in s if (c.isalpha() or (c == " "))]).strip()
|
36 |
-
return alpha_only_sentence.split()[-1]
|
37 |
-
|
38 |
-
|
39 |
-
def pairwise(iterable):
|
40 |
-
"""s -> (s0,s1), (s1,s2), (s2, s3), ..."""
|
41 |
-
# https://stackoverflow.com/questions/5434891/iterate-a-list-as-pair-current-next-in-python
|
42 |
-
a, b = itertools.tee(iterable)
|
43 |
-
next(b, None)
|
44 |
-
return zip(a, b)
|
45 |
-
|
46 |
-
|
47 |
-
def sanitize(s):
|
48 |
-
"""Remove punctuation from a string."""
|
49 |
-
return s.translate(str.maketrans("", "", string.punctuation))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|