hichri-mo's picture
Update app.py
a9a712b verified
raw
history blame
2.2 kB
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
from datasets import load_dataset
ds = load_dataset("hichri-mo/twensa-hositng")
context=ds["text"]
system_prompt = f"""you are twensa hosting chat bot
to know more about twensa hosting this is an ad about them :
{context}
"""
model = AutoModelForCausalLM.from_pretrained("KingNish/Qwen2.5-0.5b-Test-ft",
torch_dtype=torch.float16)
tokenizer = AutoTokenizer.from_pretrained("KingNish/Qwen2.5-0.5b-Test-ft")
device = torch.device('cuda')
model = model.to(device)
def chat(message, history):
chat = [{"role":"system","content":system_prompt}]
for item in history:
chat.append({"role": "user", "content": item[0]})
if item[1] is not None:
chat.append({"role": "assistant", "content": item[1]})
chat.append({"role": "user", "content": message})
messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
# Tokenize the messages string
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.95,
top_k=1000,
temperature=0.75,
num_beams=1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Initialize an empty string to store the generated text
partial_text = ""
for new_text in streamer:
partial_text += new_text
yield partial_text
demo = gr.ChatInterface(fn=chat,
chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True,layout="bubble", bubble_full_width=False),
theme="dark",
examples=[["what is twensa hosting ?"]],
title="TWENSA HOSTING CHAT BOT")
# Launch the app
demo.launch()