hichri-mo commited on
Commit
ffb6bec
Β·
verified Β·
1 Parent(s): 72a81a0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -52
app.py CHANGED
@@ -1,64 +1,64 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
 
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import torch
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
5
+ import os
6
+ from threading import Thread
7
 
8
+ !gdown 17_uyVadOd6pCzZ044hFOWUX4o6DkB00t
9
+ with open("scraped_data.txt") as f :
10
+ context = f.read()
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ system_prompt = f"""you are twensa hosting chat bot
13
+ to know more about twensa hosting this is an ad about them :
14
+ {context}
15
+ """
 
16
 
17
+ model = AutoModelForCausalLM.from_pretrained("KingNish/Qwen2.5-0.5b-Test-ft",
18
+ torch_dtype=torch.float16)
19
+ tokenizer = AutoTokenizer.from_pretrained("KingNish/Qwen2.5-0.5b-Test-ft")
20
+ device = torch.device('cuda')
21
+ model = model.to(device)
22
 
 
23
 
24
+ def chat(message, history):
25
+ chat = [{"role":"system","content":system_prompt}]
26
+ for item in history:
27
+ chat.append({"role": "user", "content": item[0]})
28
+ if item[1] is not None:
29
+ chat.append({"role": "assistant", "content": item[1]})
30
+ chat.append({"role": "user", "content": message})
31
+ messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
32
+ # Tokenize the messages string
33
+ model_inputs = tokenizer([messages], return_tensors="pt").to(device)
34
+ streamer = TextIteratorStreamer(
35
+ tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
36
+ generate_kwargs = dict(
37
+ model_inputs,
38
+ streamer=streamer,
39
+ max_new_tokens=1024,
40
+ do_sample=True,
41
+ top_p=0.95,
42
+ top_k=1000,
43
+ temperature=0.75,
44
+ num_beams=1,
45
+ )
46
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
47
+ t.start()
48
 
49
+ # Initialize an empty string to store the generated text
50
+ partial_text = ""
51
+ for new_text in streamer:
52
+ partial_text += new_text
53
+ yield partial_text
54
 
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
+ demo = gr.ChatInterface(fn=chat,
58
+ chatbot=gr.Chatbot(show_label=True, show_share_button=True, show_copy_button=True,layout="bubble", bubble_full_width=False),
59
+ theme="dark",
60
+ examples=[["what is twensa hosting ?"]],
61
+ title="TWENSA HOSTING CHAT BOT")
62
 
63
+ # Launch the app
64
+ demo.launch()