h2ogpt-chatbot / src /gpt4all_llm.py
pseudotensor's picture
Update with h2oGPT hash 1c93f1c26432bacd38ceb1726fe6009f8d240cb3
1bd70cc
import inspect
import os
from typing import Dict, Any, Optional, List, Iterator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.schema.output import GenerationChunk
from pydantic import root_validator
from langchain.llms import gpt4all
from utils import FakeTokenizer, get_ngpus_vis, url_alive, download_simple
def get_model_tokenizer_gpt4all(base_model, n_jobs=None, max_seq_len=None, llamacpp_dict=None):
assert llamacpp_dict is not None
# defaults (some of these are generation parameters, so need to be passed in at generation time)
model_name = base_model.lower()
model = get_llm_gpt4all(model_name, model=None,
# max_new_tokens=max_new_tokens,
# temperature=temperature,
# repetition_penalty=repetition_penalty,
# top_k=top_k,
# top_p=top_p,
# callbacks=callbacks,
n_jobs=n_jobs,
# verbose=verbose,
# streaming=stream_output,
# prompter=prompter,
# context=context,
# iinput=iinput,
inner_class=True,
max_seq_len=max_seq_len,
llamacpp_dict=llamacpp_dict,
)
return model, FakeTokenizer(), 'cpu'
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
class H2OStreamingStdOutCallbackHandler(StreamingStdOutCallbackHandler):
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Run on new LLM token. Only available when streaming is enabled."""
# streaming to std already occurs without this
# sys.stdout.write(token)
# sys.stdout.flush()
pass
def get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=[]):
# default from class
model_kwargs = {k: v.default for k, v in dict(inspect.signature(cls).parameters).items() if k not in exclude_list}
# from our defaults
model_kwargs.update(default_kwargs)
# from user defaults
model_kwargs.update(llamacpp_dict)
# ensure only valid keys
func_names = list(inspect.signature(cls).parameters)
model_kwargs = {k: v for k, v in model_kwargs.items() if k in func_names}
# make int or float if can to satisfy types for class
for k, v in model_kwargs.items():
try:
if float(v) == int(v):
model_kwargs[k] = int(v)
else:
model_kwargs[k] = float(v)
except:
pass
return model_kwargs
def get_gpt4all_default_kwargs(max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
n_jobs=None,
verbose=False,
max_seq_len=None,
):
if n_jobs in [None, -1]:
n_jobs = int(os.getenv('OMP_NUM_THREADS', str(os.cpu_count()//2)))
n_jobs = max(1, min(20, n_jobs)) # hurts beyond some point
n_gpus = get_ngpus_vis()
default_kwargs = dict(context_erase=0.5,
n_batch=1,
max_tokens=max_seq_len - max_new_tokens,
n_predict=max_new_tokens,
repeat_last_n=64 if repetition_penalty != 1.0 else 0,
repeat_penalty=repetition_penalty,
temp=temperature,
temperature=temperature,
top_k=top_k,
top_p=top_p,
use_mlock=True,
n_ctx=max_seq_len,
n_threads=n_jobs,
verbose=verbose)
if n_gpus != 0:
default_kwargs.update(dict(n_gpu_layers=100))
return default_kwargs
def get_llm_gpt4all(model_name,
model=None,
max_new_tokens=256,
temperature=0.1,
repetition_penalty=1.0,
top_k=40,
top_p=0.7,
streaming=False,
callbacks=None,
prompter=None,
context='',
iinput='',
n_jobs=None,
verbose=False,
inner_class=False,
max_seq_len=None,
llamacpp_dict=None,
):
if not inner_class:
assert prompter is not None
default_kwargs = \
get_gpt4all_default_kwargs(max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_k=top_k,
top_p=top_p,
n_jobs=n_jobs,
verbose=verbose,
max_seq_len=max_seq_len,
)
if model_name == 'llama':
cls = H2OLlamaCpp
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_path_llama')
if os.path.isfile(os.path.basename(model_path)):
# e.g. if offline but previously downloaded
model_path = os.path.basename(model_path)
elif url_alive(model_path):
# online
ggml_path = os.getenv('GGML_PATH')
dest = os.path.join(ggml_path, os.path.basename(model_path)) if ggml_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(dict(model_path=model_path, callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput))
# migration to new langchain fix:
odd_keys = ['model_kwargs', 'grammar_path', 'grammar']
for key in odd_keys:
model_kwargs.pop(key, None)
llm = cls(**model_kwargs)
llm.client.verbose = verbose
inner_model = llm.client
elif model_name == 'gpt4all_llama':
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gpt4all_llama')
if url_alive(model_path):
# online
ggml_path = os.getenv('GGML_PATH')
dest = os.path.join(ggml_path, os.path.basename(model_path)) if ggml_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='llama', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput))
llm = cls(**model_kwargs)
inner_model = llm.client
elif model_name == 'gptj':
cls = H2OGPT4All
if model is None:
llamacpp_dict = llamacpp_dict.copy()
model_path = llamacpp_dict.pop('model_name_gptj') if model is None else model
if url_alive(model_path):
ggml_path = os.getenv('GGML_PATH')
dest = os.path.join(ggml_path, os.path.basename(model_path)) if ggml_path else None
model_path = download_simple(model_path, dest=dest)
else:
model_path = model
model_kwargs = get_model_kwargs(llamacpp_dict, default_kwargs, cls, exclude_list=['lc_kwargs'])
model_kwargs.update(
dict(model=model_path, backend='gptj', callbacks=callbacks, streaming=streaming,
prompter=prompter, context=context, iinput=iinput))
llm = cls(**model_kwargs)
inner_model = llm.client
else:
raise RuntimeError("No such model_name %s" % model_name)
if inner_class:
return inner_model
else:
return llm
class H2OGPT4All(gpt4all.GPT4All):
model: Any
prompter: Any
context: Any = ''
iinput: Any = ''
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in the environment."""
try:
if isinstance(values["model"], str):
from gpt4all import GPT4All as GPT4AllModel
full_path = values["model"]
model_path, delimiter, model_name = full_path.rpartition("/")
model_path += delimiter
values["client"] = GPT4AllModel(
model_name=model_name,
model_path=model_path or None,
model_type=values["backend"],
allow_download=True,
)
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
else:
values["client"] = values["model"]
if values["n_threads"] is not None:
# set n_threads
values["client"].model.set_thread_count(values["n_threads"])
try:
values["backend"] = values["client"].model_type
except AttributeError:
# The below is for compatibility with GPT4All Python bindings <= 0.2.3.
values["backend"] = values["client"].model.model_type
except ImportError:
raise ValueError(
"Could not import gpt4all python package. "
"Please install it with `pip install gpt4all`."
)
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
# Roughly 4 chars per token if natural language
n_ctx = 2048
prompt = prompt[-self.max_tokens * 4:]
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
verbose = False
if verbose:
print("_call prompt: %s" % prompt, flush=True)
# FIXME: GPT4ALl doesn't support yield during generate, so cannot support streaming except via itself to stdout
return super()._call(prompt, stop=stop, run_manager=run_manager)
# FIXME: Unsure what uses
#def get_token_ids(self, text: str) -> List[int]:
# return self.client.tokenize(b" " + text.encode("utf-8"))
from langchain.llms import LlamaCpp
class H2OLlamaCpp(LlamaCpp):
model_path: Any
prompter: Any
context: Any
iinput: Any
"""Path to the pre-trained GPT4All model file."""
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that llama-cpp-python library is installed."""
if isinstance(values["model_path"], str):
model_path = values["model_path"]
model_param_names = [
"lora_path",
"lora_base",
"n_ctx",
"n_parts",
"seed",
"f16_kv",
"logits_all",
"vocab_only",
"use_mlock",
"n_threads",
"n_batch",
"use_mmap",
"last_n_tokens_size",
]
model_params = {k: values[k] for k in model_param_names}
# For backwards compatibility, only include if non-null.
if values["n_gpu_layers"] is not None:
model_params["n_gpu_layers"] = values["n_gpu_layers"]
try:
try:
from llama_cpp import Llama
except ImportError:
from llama_cpp_cuda import Llama
values["client"] = Llama(model_path, **model_params)
except ImportError:
raise ModuleNotFoundError(
"Could not import llama-cpp-python library. "
"Please install the llama-cpp-python library to "
"use this embedding model: pip install llama-cpp-python"
)
except Exception as e:
raise ValueError(
f"Could not load Llama model from path: {model_path}. "
f"Received error {e}"
)
else:
values["client"] = values["model_path"]
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs,
) -> str:
verbose = False
# tokenize twice, just to count tokens, since llama cpp python wrapper has no way to truncate
# still have to avoid crazy sizes, else hit llama_tokenize: too many tokens -- might still hit, not fatal
prompt = prompt[-self.n_ctx * 4:]
prompt_tokens = self.client.tokenize(b" " + prompt.encode("utf-8"))
num_prompt_tokens = len(prompt_tokens)
if num_prompt_tokens > self.n_ctx:
# conservative by using int()
chars_per_token = int(len(prompt) / num_prompt_tokens)
prompt = prompt[-self.n_ctx * chars_per_token:]
if verbose:
print("reducing tokens, assuming average of %s chars/token: %s" % chars_per_token, flush=True)
prompt_tokens2 = self.client.tokenize(b" " + prompt.encode("utf-8"))
num_prompt_tokens2 = len(prompt_tokens2)
print("reduced tokens from %d -> %d" % (num_prompt_tokens, num_prompt_tokens2), flush=True)
# use instruct prompting
data_point = dict(context=self.context, instruction=prompt, input=self.iinput)
prompt = self.prompter.generate_prompt(data_point)
if verbose:
print("_call prompt: %s" % prompt, flush=True)
if self.streaming:
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
text = ""
for token in self.stream(input=prompt, stop=stop):
# for token in self.stream(input=prompt, stop=stop, run_manager=run_manager):
text_chunk = token # ["choices"][0]["text"]
# self.stream already calls text_callback
# if text_callback:
# text_callback(text_chunk)
text += text_chunk
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
return text[len(prompt):]
else:
params = self._get_parameters(stop)
params = {**params, **kwargs}
result = self.client(prompt=prompt, **params)
return result["choices"][0]["text"]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
# parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
logprobs = 0
chunk = GenerationChunk(
text=prompt,
generation_info={"logprobs": logprobs},
)
yield chunk
if run_manager:
run_manager.on_llm_new_token(
token=chunk.text, verbose=self.verbose, log_probs=logprobs
)
# actual new tokens
for chunk in super()._stream(prompt, stop=stop, run_manager=run_manager, **kwargs):
yield chunk
def get_token_ids(self, text: str) -> List[int]:
return self.client.tokenize(b" " + text.encode("utf-8"))