import gradio as gr import rdflib import requests import matplotlib.pyplot as plt import networkx as nx from io import BytesIO import base64 # Função para carregar e extrair os nomes do arquivo JSON-LD a partir de uma URL def load_names_from_url(jsonld_url): response = requests.get(jsonld_url) data = response.json() names = [] for item in data: if 'name' in item: names.append(item['name']) return names # Carregar nomes do arquivo JSON-LD jsonld_url = 'https://huggingface.co/spaces/histlearn/ShowGraph/raw/main/datafile.jsonld' names = load_names_from_url(jsonld_url) def build_graph_from_jsonld(jsonld_url, selected_name): response = requests.get(jsonld_url) data = response.json() # Filtrar o local selecionado selected_data = next((item for item in data if item['name'] == selected_name), None) if not selected_data: return "Local não encontrado." G = nx.DiGraph() # Adicionar nó do Place place_id = selected_data['@id'] place_label = f"schema:Place\nName: {selected_data['name']}\nDescription: {selected_data['description'][:30]}..." G.add_node(place_id, label=place_label) # Adicionar nó de GeoCoordinates geo_data = selected_data['geo'] geo_id = geo_data['@id'] geo_label = f"geo:SpatialThing\nLat: {geo_data['lat']}\nLong: {geo_data['long']}\nFeatureCode: {geo_data['gn:featureCode']}\nFeatureCodeName: {geo_data['gn:featureCodeName']}\nName: {geo_data['gn:name']}" G.add_node(geo_id, label=geo_label) G.add_edge(place_id, geo_id, label="schema:geo") # Adicionar nós de CreativeWork for work in selected_data.get('subjectOf', []): work_id = work['@id'] work_label = f"schema:CreativeWork\nHeadline: {work['headline']}\nGenre: {work['genre']}\nDatePublished: {work['datePublished']}\nText: {work['text'][:30]}...\nLanguage: {work['inLanguage']}" G.add_node(work_id, label=work_label) G.add_edge(place_id, work_id, label="schema:subjectOf") return G def run_query_and_visualize(selected_location, jsonld_url): G = build_graph_from_jsonld(jsonld_url, selected_location) if isinstance(G, str): # Caso de erro return G # Define posições específicas para os nós importantes pos = nx.spring_layout(G) # Desenha o gráfico usando NetworkX e Matplotlib plt.figure(figsize=(15, 10)) nx.draw_networkx_nodes(G, pos, node_size=3000, node_color="skyblue", alpha=0.9) nx.draw_networkx_edges(G, pos, width=2, alpha=0.5, edge_color='gray') nx.draw_networkx_labels(G, pos, labels=nx.get_node_attributes(G, 'label'), font_size=9, font_color="black") nx.draw_networkx_edge_labels(G, pos, edge_labels=nx.get_edge_attributes(G, 'label'), font_size=9, font_color="red") plt.title("Resultado da Consulta", size=15) plt.axis('off') # Salva o gráfico em um arquivo buf = BytesIO() plt.savefig(buf, format='png') buf.seek(0) img_str = base64.b64encode(buf.read()).decode() graph_html = f'<img src="data:image/png;base64,{img_str}"/>' plt.close() print("Gráfico gerado com sucesso.") return graph_html with gr.Blocks() as demo: gr.Markdown("# Visualização de Query SPARQL") with gr.Column(): selected_location = gr.Dropdown(choices=names, label="Selecione o Local") run_button = gr.Button("Visualizar Grafo") graph_output = gr.HTML() def on_run_button_click(selected_location): return run_query_and_visualize(selected_location, jsonld_url) run_button.click(fn=on_run_button_click, inputs=[selected_location], outputs=graph_output) demo.launch()