Spaces:
Runtime error
Runtime error
Sri harsha Patallapalli
commited on
Commit
•
f7a3e67
1
Parent(s):
ab901b4
adding chat
Browse files- app.py +51 -62
- requirements.txt +6 -1
app.py
CHANGED
@@ -1,63 +1,52 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
""
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
):
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
"""
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModel, AutoTokenizer, AutoProcessor, LlavaForConditionalGeneration
|
3 |
import gradio as gr
|
4 |
+
|
5 |
+
# Specify CPU usage
|
6 |
+
device = torch.device("cpu")
|
7 |
+
|
8 |
+
model_id = "hitmanonholiday/llava-1.5-7b-4bit-finetuned3"
|
9 |
+
|
10 |
+
# Load the tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
+
|
13 |
+
# Load the model without quantization
|
14 |
+
model = LlavaForConditionalGeneration.from_pretrained(
|
15 |
+
model_id,
|
16 |
+
torch_dtype=torch.float32 # Use float32 for CPU compatibility
|
17 |
+
).to(device)
|
18 |
+
|
19 |
+
# Load the processor (if needed)
|
20 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
21 |
+
processor.tokenizer = tokenizer
|
22 |
+
|
23 |
+
# Define the chat template (if using Gradio)
|
24 |
+
LLAVA_CHAT_TEMPLATE = """A chat between a curious user and an artificial intelligence assistant.
|
25 |
+
The assistant gives helpful, detailed, and polite answers to the user's questions.
|
26 |
+
{% for message in messages %}{% if message['role'] == 'user' %}
|
27 |
+
USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}
|
28 |
+
{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}"""
|
29 |
+
|
30 |
+
tokenizer.chat_template = LLAVA_CHAT_TEMPLATE
|
31 |
+
|
32 |
+
# Define the prediction function (if using Gradio)
|
33 |
+
def predict(image, text):
|
34 |
+
# Process the image (if needed)
|
35 |
+
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
|
36 |
+
|
37 |
+
# Generate response
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
40 |
+
|
41 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
42 |
+
return response
|
43 |
+
|
44 |
+
# Define Gradio interface (if using Gradio)
|
45 |
+
inputs = [
|
46 |
+
gr.inputs.Image(type="pil", label="Upload an image"),
|
47 |
+
gr.inputs.Textbox(lines=2, placeholder="Type your text here...", label="Input Text")
|
48 |
+
]
|
49 |
+
|
50 |
+
outputs = gr.outputs.Textbox(label="Output")
|
51 |
+
|
52 |
+
gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="LLAVA Multimodal Chatbot").launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
huggingface_hub==0.22.2
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.22.2
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
gradio
|
5 |
+
torchvision
|
6 |
+
torchaudio
|