Sri harsha Patallapalli commited on
Commit
f7a3e67
1 Parent(s): ab901b4

adding chat

Browse files
Files changed (2) hide show
  1. app.py +51 -62
  2. requirements.txt +6 -1
app.py CHANGED
@@ -1,63 +1,52 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoModel, AutoTokenizer, AutoProcessor, LlavaForConditionalGeneration
3
  import gradio as gr
4
+
5
+ # Specify CPU usage
6
+ device = torch.device("cpu")
7
+
8
+ model_id = "hitmanonholiday/llava-1.5-7b-4bit-finetuned3"
9
+
10
+ # Load the tokenizer
11
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
12
+
13
+ # Load the model without quantization
14
+ model = LlavaForConditionalGeneration.from_pretrained(
15
+ model_id,
16
+ torch_dtype=torch.float32 # Use float32 for CPU compatibility
17
+ ).to(device)
18
+
19
+ # Load the processor (if needed)
20
+ processor = AutoProcessor.from_pretrained(model_id)
21
+ processor.tokenizer = tokenizer
22
+
23
+ # Define the chat template (if using Gradio)
24
+ LLAVA_CHAT_TEMPLATE = """A chat between a curious user and an artificial intelligence assistant.
25
+ The assistant gives helpful, detailed, and polite answers to the user's questions.
26
+ {% for message in messages %}{% if message['role'] == 'user' %}
27
+ USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}
28
+ {% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}"""
29
+
30
+ tokenizer.chat_template = LLAVA_CHAT_TEMPLATE
31
+
32
+ # Define the prediction function (if using Gradio)
33
+ def predict(image, text):
34
+ # Process the image (if needed)
35
+ inputs = processor(images=image, text=text, return_tensors="pt").to(device)
36
+
37
+ # Generate response
38
+ with torch.no_grad():
39
+ outputs = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
40
+
41
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
42
+ return response
43
+
44
+ # Define Gradio interface (if using Gradio)
45
+ inputs = [
46
+ gr.inputs.Image(type="pil", label="Upload an image"),
47
+ gr.inputs.Textbox(lines=2, placeholder="Type your text here...", label="Input Text")
48
+ ]
49
+
50
+ outputs = gr.outputs.Textbox(label="Output")
51
+
52
+ gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="LLAVA Multimodal Chatbot").launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1 +1,6 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ transformers
3
+ torch
4
+ gradio
5
+ torchvision
6
+ torchaudio