Spaces:
Running
Running
Update app.py
Browse filesAdded raw frequencies and scaled frequencies and importance for each.
app.py
CHANGED
@@ -126,6 +126,9 @@ def predict(file_obj):
|
|
126 |
kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
|
127 |
X_tensor = torch.FloatTensor(kmer_vector).to(device)
|
128 |
|
|
|
|
|
|
|
129 |
# Get predictions and feature importance
|
130 |
with torch.no_grad():
|
131 |
output = model(X_tensor)
|
@@ -135,8 +138,8 @@ def predict(file_obj):
|
|
135 |
importance = model.get_feature_importance(X_tensor)
|
136 |
kmer_importance = importance[0].cpu().numpy()
|
137 |
|
138 |
-
#
|
139 |
-
kmer_importance
|
140 |
|
141 |
# Get top 10 k-mers
|
142 |
top_k = 10
|
@@ -145,7 +148,7 @@ def predict(file_obj):
|
|
145 |
{
|
146 |
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
|
147 |
'importance': float(kmer_importance[i]),
|
148 |
-
'frequency': float(
|
149 |
}
|
150 |
for i in top_indices
|
151 |
]
|
@@ -163,7 +166,7 @@ Non-human probability: {float(probs[0][0]):0.4f}
|
|
163 |
Most influential k-mers:"""
|
164 |
|
165 |
for kmer in important_kmers:
|
166 |
-
result += f"\n {kmer['kmer']}: importance={kmer['importance']:.4f},
|
167 |
|
168 |
results.append(result)
|
169 |
except Exception as e:
|
|
|
126 |
kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
|
127 |
X_tensor = torch.FloatTensor(kmer_vector).to(device)
|
128 |
|
129 |
+
# Get raw frequency vector before scaling
|
130 |
+
raw_freq_vector = sequence_to_kmer_vector(seq)
|
131 |
+
|
132 |
# Get predictions and feature importance
|
133 |
with torch.no_grad():
|
134 |
output = model(X_tensor)
|
|
|
138 |
importance = model.get_feature_importance(X_tensor)
|
139 |
kmer_importance = importance[0].cpu().numpy()
|
140 |
|
141 |
+
# Normalize importance scores to match original scale
|
142 |
+
kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002
|
143 |
|
144 |
# Get top 10 k-mers
|
145 |
top_k = 10
|
|
|
148 |
{
|
149 |
'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)],
|
150 |
'importance': float(kmer_importance[i]),
|
151 |
+
'frequency': float(raw_freq_vector[i])
|
152 |
}
|
153 |
for i in top_indices
|
154 |
]
|
|
|
166 |
Most influential k-mers:"""
|
167 |
|
168 |
for kmer in important_kmers:
|
169 |
+
result += f"\n {kmer['kmer']}: importance={kmer['importance']:.4f}, raw_freq={kmer['raw_frequency']:.4f} ({kmer['raw_frequency']*100:.2f}%), scaled_freq={kmer['scaled_frequency']:.4f}"
|
170 |
|
171 |
results.append(result)
|
172 |
except Exception as e:
|