Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import joblib
|
4 |
+
import numpy as np
|
5 |
+
from itertools import product
|
6 |
+
from typing import Dict
|
7 |
+
import torch.nn as nn
|
8 |
+
|
9 |
+
class VirusClassifier(nn.Module):
|
10 |
+
def __init__(self, input_shape: int):
|
11 |
+
super(VirusClassifier, self).__init__()
|
12 |
+
self.network = nn.Sequential(
|
13 |
+
nn.Linear(input_shape, 64),
|
14 |
+
nn.GELU(),
|
15 |
+
nn.BatchNorm1d(64),
|
16 |
+
nn.Dropout(0.3),
|
17 |
+
nn.Linear(64, 32),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.BatchNorm1d(32),
|
20 |
+
nn.Dropout(0.3),
|
21 |
+
nn.Linear(32, 32),
|
22 |
+
nn.GELU(),
|
23 |
+
nn.Linear(32, 2)
|
24 |
+
)
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
return self.network(x)
|
28 |
+
|
29 |
+
def sequence_to_kmer_vector(sequence: str, k: int = 6) -> np.ndarray:
|
30 |
+
"""Convert sequence to k-mer frequency vector"""
|
31 |
+
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
|
32 |
+
kmer_dict = {kmer: 0 for kmer in kmers}
|
33 |
+
|
34 |
+
for i in range(len(sequence) - k + 1):
|
35 |
+
kmer = sequence[i:i+k]
|
36 |
+
if kmer in kmer_dict: # only count valid kmers
|
37 |
+
kmer_dict[kmer] += 1
|
38 |
+
|
39 |
+
return np.array(list(kmer_dict.values()))
|
40 |
+
|
41 |
+
def parse_fasta(fasta_content: str):
|
42 |
+
"""Parse FASTA format string"""
|
43 |
+
sequences = []
|
44 |
+
current_header = None
|
45 |
+
current_sequence = []
|
46 |
+
|
47 |
+
for line in fasta_content.split('\n'):
|
48 |
+
line = line.strip()
|
49 |
+
if not line:
|
50 |
+
continue
|
51 |
+
if line.startswith('>'):
|
52 |
+
if current_header is not None:
|
53 |
+
sequences.append((current_header, ''.join(current_sequence)))
|
54 |
+
current_header = line[1:]
|
55 |
+
current_sequence = []
|
56 |
+
else:
|
57 |
+
current_sequence.append(line.upper())
|
58 |
+
|
59 |
+
if current_header is not None:
|
60 |
+
sequences.append((current_header, ''.join(current_sequence)))
|
61 |
+
|
62 |
+
return sequences
|
63 |
+
|
64 |
+
def predict_sequence(fasta_content: str) -> str:
|
65 |
+
"""Process FASTA input and return formatted predictions"""
|
66 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
67 |
+
k = 6
|
68 |
+
|
69 |
+
# Load model and scaler
|
70 |
+
model = VirusClassifier(4096).to(device) # 4096 = 4^6 for 6-mers
|
71 |
+
model.load_state_dict(torch.load('model.pt', map_location=device))
|
72 |
+
scaler = joblib.load('scaler.pkl')
|
73 |
+
model.eval()
|
74 |
+
|
75 |
+
# Process sequences
|
76 |
+
sequences = parse_fasta(fasta_content)
|
77 |
+
results = []
|
78 |
+
|
79 |
+
for header, seq in sequences:
|
80 |
+
# Convert sequence to k-mer vector
|
81 |
+
kmer_vector = sequence_to_kmer_vector(seq, k)
|
82 |
+
kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
|
83 |
+
|
84 |
+
# Get prediction
|
85 |
+
with torch.no_grad():
|
86 |
+
output = model(torch.FloatTensor(kmer_vector).to(device))
|
87 |
+
probs = torch.softmax(output, dim=1)
|
88 |
+
|
89 |
+
# Format result
|
90 |
+
pred_class = 1 if probs[0][1] > probs[0][0] else 0
|
91 |
+
pred_label = 'human' if pred_class == 1 else 'non-human'
|
92 |
+
|
93 |
+
result = f"""
|
94 |
+
Sequence: {header}
|
95 |
+
Prediction: {pred_label}
|
96 |
+
Confidence: {float(max(probs[0])):0.4f}
|
97 |
+
Human probability: {float(probs[0][1]):0.4f}
|
98 |
+
Non-human probability: {float(probs[0][0]):0.4f}
|
99 |
+
"""
|
100 |
+
results.append(result)
|
101 |
+
|
102 |
+
return "\n".join(results)
|
103 |
+
|
104 |
+
# Create Gradio interface
|
105 |
+
iface = gr.Interface(
|
106 |
+
fn=predict_sequence,
|
107 |
+
inputs=gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"]),
|
108 |
+
outputs=gr.Textbox(label="Prediction Results"),
|
109 |
+
title="Virus Host Classifier",
|
110 |
+
description="Upload a FASTA file to predict whether a virus sequence is likely to infect human or non-human hosts.",
|
111 |
+
examples=[["example.fasta"]],
|
112 |
+
cache_examples=True
|
113 |
+
)
|
114 |
+
|
115 |
+
# Launch the interface
|
116 |
+
iface.launch()
|