Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -25,15 +25,13 @@ class VirusClassifier(nn.Module):
|
|
25 |
def forward(self, x):
|
26 |
return self.network(x)
|
27 |
|
28 |
-
def sequence_to_kmer_vector(sequence: str, k: int =
|
29 |
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
|
30 |
kmer_dict = {kmer: 0 for kmer in kmers}
|
31 |
-
|
32 |
for i in range(len(sequence) - k + 1):
|
33 |
kmer = sequence[i:i+k]
|
34 |
if kmer in kmer_dict:
|
35 |
kmer_dict[kmer] += 1
|
36 |
-
|
37 |
return np.array(list(kmer_dict.values()))
|
38 |
|
39 |
def parse_fasta(text):
|
@@ -52,10 +50,8 @@ def parse_fasta(text):
|
|
52 |
current_sequence = []
|
53 |
else:
|
54 |
current_sequence.append(line.upper())
|
55 |
-
|
56 |
if current_header:
|
57 |
sequences.append((current_header, ''.join(current_sequence)))
|
58 |
-
|
59 |
return sequences
|
60 |
|
61 |
def predict(file_obj):
|
@@ -63,51 +59,61 @@ def predict(file_obj):
|
|
63 |
return "Please upload a FASTA file"
|
64 |
|
65 |
# Read the file content
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
# Load model and scaler
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
75 |
# Get predictions
|
76 |
results = []
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
result = f"""
|
94 |
-
Sequence: {header}
|
95 |
Prediction: {pred_label}
|
96 |
Confidence: {float(max(probs[0])):0.4f}
|
97 |
Human probability: {float(probs[0][1]):0.4f}
|
98 |
-
Non-human probability: {float(probs[0][0]):0.4f}
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
# Create the interface
|
105 |
iface = gr.Interface(
|
106 |
fn=predict,
|
107 |
-
inputs=gr.File(label="Upload FASTA file"),
|
108 |
outputs=gr.Textbox(label="Results"),
|
109 |
title="Virus Host Classifier"
|
110 |
)
|
111 |
|
112 |
-
# Launch
|
113 |
-
|
|
|
|
25 |
def forward(self, x):
|
26 |
return self.network(x)
|
27 |
|
28 |
+
def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
|
29 |
kmers = [''.join(p) for p in product("ACGT", repeat=k)]
|
30 |
kmer_dict = {kmer: 0 for kmer in kmers}
|
|
|
31 |
for i in range(len(sequence) - k + 1):
|
32 |
kmer = sequence[i:i+k]
|
33 |
if kmer in kmer_dict:
|
34 |
kmer_dict[kmer] += 1
|
|
|
35 |
return np.array(list(kmer_dict.values()))
|
36 |
|
37 |
def parse_fasta(text):
|
|
|
50 |
current_sequence = []
|
51 |
else:
|
52 |
current_sequence.append(line.upper())
|
|
|
53 |
if current_header:
|
54 |
sequences.append((current_header, ''.join(current_sequence)))
|
|
|
55 |
return sequences
|
56 |
|
57 |
def predict(file_obj):
|
|
|
59 |
return "Please upload a FASTA file"
|
60 |
|
61 |
# Read the file content
|
62 |
+
try:
|
63 |
+
# Handle both string and file object cases
|
64 |
+
if isinstance(file_obj, str):
|
65 |
+
text = file_obj
|
66 |
+
else:
|
67 |
+
text = file_obj.decode('utf-8')
|
68 |
+
except Exception as e:
|
69 |
+
return f"Error reading file: {str(e)}"
|
70 |
+
|
71 |
# Load model and scaler
|
72 |
+
try:
|
73 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
74 |
+
model = VirusClassifier(4096).to(device)
|
75 |
+
model.load_state_dict(torch.load('model.pt', map_location=device))
|
76 |
+
scaler = joblib.load('scaler.pkl')
|
77 |
+
model.eval()
|
78 |
+
except Exception as e:
|
79 |
+
return f"Error loading model: {str(e)}"
|
80 |
+
|
81 |
# Get predictions
|
82 |
results = []
|
83 |
+
try:
|
84 |
+
sequences = parse_fasta(text)
|
85 |
+
for header, seq in sequences:
|
86 |
+
# Get k-mer vector
|
87 |
+
kmer_vector = sequence_to_kmer_vector(seq)
|
88 |
+
kmer_vector = scaler.transform(kmer_vector.reshape(1, -1))
|
89 |
+
|
90 |
+
# Predict
|
91 |
+
with torch.no_grad():
|
92 |
+
output = model(torch.FloatTensor(kmer_vector).to(device))
|
93 |
+
probs = torch.softmax(output, dim=1)
|
94 |
+
|
95 |
+
# Format results
|
96 |
+
pred_class = 1 if probs[0][1] > probs[0][0] else 0
|
97 |
+
pred_label = 'human' if pred_class == 1 else 'non-human'
|
98 |
+
result = f"""Sequence: {header}
|
|
|
|
|
99 |
Prediction: {pred_label}
|
100 |
Confidence: {float(max(probs[0])):0.4f}
|
101 |
Human probability: {float(probs[0][1]):0.4f}
|
102 |
+
Non-human probability: {float(probs[0][0]):0.4f}"""
|
103 |
+
results.append(result)
|
104 |
+
except Exception as e:
|
105 |
+
return f"Error processing sequences: {str(e)}"
|
106 |
+
|
107 |
+
return "\n\n".join(results)
|
108 |
|
109 |
# Create the interface
|
110 |
iface = gr.Interface(
|
111 |
fn=predict,
|
112 |
+
inputs=gr.File(label="Upload FASTA file", type="binary"),
|
113 |
outputs=gr.Textbox(label="Results"),
|
114 |
title="Virus Host Classifier"
|
115 |
)
|
116 |
|
117 |
+
# Launch the interface
|
118 |
+
if __name__ == "__main__":
|
119 |
+
iface.launch() # Remove share=True for Hugging Face Spaces
|