import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert sequence to k-mer frequency vector""" # Generate all possible k-mers kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} # Initialize vector vec = np.zeros(len(kmers), dtype=np.float32) # Count k-mers for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: vec[kmer_dict[kmer]] += 1 # Convert to frequencies total_kmers = len(sequence) - k + 1 if total_kmers > 0: vec = vec / total_kmers return vec def parse_fasta(text): sequences = [] current_header = None current_sequence = [] for line in text.split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header: sequences.append((current_header, ''.join(current_sequence))) return sequences def predict(file_obj): if file_obj is None: return "Please upload a FASTA file" # Read the file content try: # Handle both string and file object cases if isinstance(file_obj, str): text = file_obj else: text = file_obj.decode('utf-8') except Exception as e: return f"Error reading file: {str(e)}" # Load model and scaler try: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = VirusClassifier(256).to(device) # k=4 -> 4^4 = 256 features # Load model with explicit map_location state_dict = torch.load('model.pt', map_location=device) model.load_state_dict(state_dict) # Load scaler scaler = joblib.load('scaler.pkl') # Set model to evaluation mode model.eval() except Exception as e: return f"Error loading model: {str(e)}\nFull traceback: {str(e.__traceback__)}" # Get predictions results = [] try: sequences = parse_fasta(text) for header, seq in sequences: # Get k-mer vector kmer_vector = sequence_to_kmer_vector(seq) kmer_vector = scaler.transform(kmer_vector.reshape(1, -1)) # Predict with torch.no_grad(): output = model(torch.FloatTensor(kmer_vector).to(device)) probs = torch.softmax(output, dim=1) # Format results pred_class = 1 if probs[0][1] > probs[0][0] else 0 pred_label = 'human' if pred_class == 1 else 'non-human' result = f"""Sequence: {header} Prediction: {pred_label} Confidence: {float(max(probs[0])):0.4f} Human probability: {float(probs[0][1]):0.4f} Non-human probability: {float(probs[0][0]):0.4f}""" results.append(result) except Exception as e: return f"Error processing sequences: {str(e)}" return "\n\n".join(results) # Create the interface iface = gr.Interface( fn=predict, inputs=gr.File(label="Upload FASTA file", type="binary"), outputs=gr.Textbox(label="Results"), title="Virus Host Classifier" ) # Launch the interface if __name__ == "__main__": iface.launch() # Remove share=True for Hugging Face Spaces