import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) def get_feature_importance(self, x): """Calculate feature importance using gradient-based method""" x.requires_grad_(True) output = self.network(x) importance = torch.zeros_like(x) for i in range(output.shape[1]): if x.grad is not None: x.grad.zero_() output[..., i].sum().backward(retain_graph=True) importance += torch.abs(x.grad) return importance def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert sequence to k-mer frequency vector""" # Generate all possible k-mers kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} # Initialize vector vec = np.zeros(len(kmers), dtype=np.float32) # Count k-mers for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: vec[kmer_dict[kmer]] += 1 # Convert to frequencies total_kmers = len(sequence) - k + 1 if total_kmers > 0: vec = vec / total_kmers return vec def parse_fasta(text): sequences = [] current_header = None current_sequence = [] for line in text.split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header: sequences.append((current_header, ''.join(current_sequence))) return sequences def predict(file_obj): if file_obj is None: return "Please upload a FASTA file" # Read the file content try: if isinstance(file_obj, str): text = file_obj else: text = file_obj.decode('utf-8') except Exception as e: return f"Error reading file: {str(e)}" # Generate k-mer dictionary k = 4 # k-mer size kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {km: i for i, km in enumerate(kmers)} # Load model and scaler try: device = 'cuda' if torch.cuda.is_available() else 'cpu' model = VirusClassifier(256).to(device) # k=4 -> 4^4 = 256 features # Load model with explicit map_location state_dict = torch.load('model.pt', map_location=device) model.load_state_dict(state_dict) # Load scaler scaler = joblib.load('scaler.pkl') # Set model to evaluation mode model.eval() except Exception as e: return f"Error loading model: {str(e)}\nFull traceback: {str(e.__traceback__)}" # Get predictions results = [] try: sequences = parse_fasta(text) for header, seq in sequences: # Get k-mer vector kmer_vector = sequence_to_kmer_vector(seq) kmer_vector = scaler.transform(kmer_vector.reshape(1, -1)) X_tensor = torch.FloatTensor(kmer_vector).to(device) # Get raw frequency vector before scaling raw_freq_vector = sequence_to_kmer_vector(seq) # Get predictions and feature importance with torch.no_grad(): output = model(X_tensor) probs = torch.softmax(output, dim=1) # Calculate feature importance importance = model.get_feature_importance(X_tensor) kmer_importance = importance[0].cpu().numpy() # Normalize importance scores to match original scale kmer_importance = kmer_importance / np.max(np.abs(kmer_importance)) * 0.002 # Get top 10 k-mers top_k = 10 top_indices = np.argsort(np.abs(kmer_importance))[-top_k:][::-1] important_kmers = [ { 'kmer': list(kmer_dict.keys())[list(kmer_dict.values()).index(i)], 'importance': float(kmer_importance[i]), 'frequency': float(raw_freq_vector[i]) } for i in top_indices ] # Format results pred_class = 1 if probs[0][1] > probs[0][0] else 0 pred_label = 'human' if pred_class == 1 else 'non-human' result = f"""Sequence: {header} Prediction: {pred_label} Confidence: {float(max(probs[0])):0.4f} Human probability: {float(probs[0][1]):0.4f} Non-human probability: {float(probs[0][0]):0.4f} Most influential k-mers:""" for kmer in important_kmers: result += f"\n {kmer['kmer']}: importance={kmer['importance']:.4f}, raw_freq={kmer['raw_freq']:.4f} ({kmer['raw_freq']*100:.2f}%), scaled_freq={kmer['scaled_freq']:.4f}" results.append(result) except Exception as e: return f"Error processing sequences: {str(e)}" return "\n\n".join(results) # Create the interface iface = gr.Interface( fn=predict, inputs=gr.File(label="Upload FASTA file", type="binary"), outputs=gr.Textbox(label="Results"), title="Virus Host Classifier" ) # Launch the interface if __name__ == "__main__": iface.launch()