import gradio as gr import torch import joblib import numpy as np from itertools import product import torch.nn as nn import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class VirusClassifier(nn.Module): def __init__(self, input_shape: int): super(VirusClassifier, self).__init__() self.network = nn.Sequential( nn.Linear(input_shape, 64), nn.GELU(), nn.BatchNorm1d(64), nn.Dropout(0.3), nn.Linear(64, 32), nn.GELU(), nn.BatchNorm1d(32), nn.Dropout(0.3), nn.Linear(32, 32), nn.GELU(), nn.Linear(32, 2) ) def forward(self, x): return self.network(x) def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray: """Convert sequence to k-mer frequency vector""" try: kmers = [''.join(p) for p in product("ACGT", repeat=k)] kmer_dict = {kmer: 0 for kmer in kmers} for i in range(len(sequence) - k + 1): kmer = sequence[i:i+k] if kmer in kmer_dict: # only count valid kmers kmer_dict[kmer] += 1 return np.array(list(kmer_dict.values())) except Exception as e: logger.error(f"Error in sequence_to_kmer_vector: {str(e)}") raise def parse_fasta(file_obj) -> list: """Parse FASTA format from file object""" try: # Read the content from the file object content = file_obj.decode('utf-8') logger.info(f"Received file content length: {len(content)}") sequences = [] current_header = None current_sequence = [] for line in content.split('\n'): line = line.strip() if not line: continue if line.startswith('>'): if current_header is not None: sequences.append((current_header, ''.join(current_sequence))) current_header = line[1:] current_sequence = [] else: current_sequence.append(line.upper()) if current_header is not None: sequences.append((current_header, ''.join(current_sequence))) logger.info(f"Parsed {len(sequences)} sequences from FASTA") return sequences except Exception as e: logger.error(f"Error parsing FASTA: {str(e)}") raise def predict_sequence(file_obj) -> str: """Process FASTA input and return formatted predictions""" try: logger.info("Starting prediction process") if file_obj is None: return "Please upload a FASTA file" device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info(f"Using device: {device}") k = 4 # Load model and scaler try: logger.info("Loading model and scaler") model = VirusClassifier(256).to(device) # 256 = 4^4 for 4-mers model.load_state_dict(torch.load('model.pt', map_location=device)) scaler = joblib.load('scaler.pkl') model.eval() except Exception as e: logger.error(f"Error loading model or scaler: {str(e)}") return f"Error loading model: {str(e)}" # Process sequences try: sequences = parse_fasta(file_obj) except Exception as e: logger.error(f"Error parsing FASTA file: {str(e)}") return f"Error parsing FASTA file: {str(e)}" results = [] for header, seq in sequences: logger.info(f"Processing sequence: {header}") try: # Convert sequence to k-mer vector kmer_vector = sequence_to_kmer_vector(seq, k) kmer_vector = scaler.transform(kmer_vector.reshape(1, -1)) # Get prediction with torch.no_grad(): output = model(torch.FloatTensor(kmer_vector).to(device)) probs = torch.softmax(output, dim=1) # Format result pred_class = 1 if probs[0][1] > probs[0][0] else 0 pred_label = 'human' if pred_class == 1 else 'non-human' result = f""" Sequence: {header} Prediction: {pred_label} Confidence: {float(max(probs[0])):0.4f} Human probability: {float(probs[0][1]):0.4f} Non-human probability: {float(probs[0][0]):0.4f} """ results.append(result) logger.info(f"Processed sequence {header} successfully") except Exception as e: logger.error(f"Error processing sequence {header}: {str(e)}") results.append(f"Error processing sequence {header}: {str(e)}") return "\n".join(results) except Exception as e: logger.error(f"Unexpected error in predict_sequence: {str(e)}") return f"An unexpected error occurred: {str(e)}" # Create Gradio interface iface = gr.Interface( fn=predict_sequence, inputs=gr.File(label="Upload FASTA file", file_types=[".fasta", ".fa", ".txt"]), outputs=gr.Textbox(label="Prediction Results", lines=10), title="Virus Host Classifier", description="Upload a FASTA file to predict whether a virus sequence is likely to infect human or non-human hosts.", examples=[["example.fasta"]], cache_examples=True ) # Launch the interface iface.launch()