Upload 3 files
Browse files- pages/对话式文本检测工具.py +209 -0
- pages/文件式文本检测工具.py +247 -0
- requirements.txt +6 -0
pages/对话式文本检测工具.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import streamlit as st
|
3 |
+
import subprocess
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers import BertTokenizer
|
9 |
+
import appbuilder
|
10 |
+
from transformers import BertModel
|
11 |
+
#加载预训练模型
|
12 |
+
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
|
13 |
+
#需要移动到cuda上
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
pretrained.to(device)
|
16 |
+
#不训练,不需要计算梯度
|
17 |
+
for param in pretrained.parameters():
|
18 |
+
param.requires_grad_(False)
|
19 |
+
|
20 |
+
#多头注意力机制
|
21 |
+
class MultiHeadAttention(nn.Module):
|
22 |
+
def __init__(self, hidden_size, num_heads):
|
23 |
+
super(MultiHeadAttention, self).__init__()
|
24 |
+
# 确保隐藏层特征数能够被头数整除
|
25 |
+
assert hidden_size % num_heads == 0
|
26 |
+
self.hidden_size = hidden_size
|
27 |
+
self.num_heads = num_heads
|
28 |
+
self.head_dim = hidden_size // num_heads # 计算每个头的维度
|
29 |
+
# 定义线性层,用于对查询、键、值进行线性变换
|
30 |
+
self.linear_q = nn.Linear(hidden_size, hidden_size)
|
31 |
+
self.linear_k = nn.Linear(hidden_size, hidden_size)
|
32 |
+
self.linear_v = nn.Linear(hidden_size, hidden_size)
|
33 |
+
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
batch_size, seq_len, _ = x.size()
|
37 |
+
# 对输入进行线性变换,并将其分割为多个头
|
38 |
+
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
39 |
+
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
40 |
+
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
41 |
+
# 计算注意力分数
|
42 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
|
43 |
+
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
|
44 |
+
# 根据注意力权重对值进行加权求和
|
45 |
+
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
46 |
+
out = self.linear_out(context) # 整合多头注意力的输出
|
47 |
+
return out
|
48 |
+
|
49 |
+
class Model(nn.Module):
|
50 |
+
def __init__(self):
|
51 |
+
super(Model, self).__init__()
|
52 |
+
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
|
53 |
+
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
|
54 |
+
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
|
55 |
+
self.dropout = nn.Dropout(p=0.5)
|
56 |
+
self.bn1 = nn.BatchNorm1d(512)
|
57 |
+
self.bn2 = nn.BatchNorm1d(256)
|
58 |
+
self.activation = nn.ReLU()
|
59 |
+
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
|
60 |
+
|
61 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
62 |
+
out = pretrained(input_ids=input_ids,
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
token_type_ids=token_type_ids).last_hidden_state
|
65 |
+
|
66 |
+
# 应用多头注意力机制
|
67 |
+
out = self.multihead_attention(out)
|
68 |
+
out = out[:, 0] # 提取[CLS]标记的输出
|
69 |
+
|
70 |
+
out = self.activation(self.bn1(self.fc1(out)))
|
71 |
+
out = self.dropout(out)
|
72 |
+
out = self.activation(self.bn2(self.fc2(out)))
|
73 |
+
out = self.dropout(out)
|
74 |
+
out = self.fc3(out)
|
75 |
+
out = out.softmax(dim=1)
|
76 |
+
return out
|
77 |
+
|
78 |
+
|
79 |
+
def load_models_and_predict(text, device):
|
80 |
+
# 加载模型
|
81 |
+
MacBERT_base_CDialBias = torch.load('models\MacBERT-base-CDialBias.pth')
|
82 |
+
MacBERT_base_CDialBias.to(device)
|
83 |
+
MacBERT_base_COLD = torch.load('models\MacBERT-base-CDialBias.pth')
|
84 |
+
MacBERT_base_COLD.to(device)
|
85 |
+
|
86 |
+
# 获取密钥和ID
|
87 |
+
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
|
88 |
+
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
|
89 |
+
|
90 |
+
# 初始化agent实例
|
91 |
+
your_agent = appbuilder.AppBuilderClient(app_id)
|
92 |
+
|
93 |
+
# 创建会话id
|
94 |
+
conversation_id = your_agent.create_conversation()
|
95 |
+
|
96 |
+
# 加载字典和分词工具
|
97 |
+
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
|
98 |
+
|
99 |
+
# 对输入文本进行编码
|
100 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
101 |
+
|
102 |
+
# 将输入数据移动到相同的设备上
|
103 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
104 |
+
|
105 |
+
# 设置模型为评估模式
|
106 |
+
MacBERT_base_CDialBias.eval()
|
107 |
+
MacBERT_base_COLD.eval()
|
108 |
+
|
109 |
+
# 调用千帆api获取标签
|
110 |
+
msg = your_agent.run(conversation_id, text)
|
111 |
+
answer = msg.content.answer
|
112 |
+
|
113 |
+
# 进行预测
|
114 |
+
with torch.no_grad():
|
115 |
+
out1 = MacBERT_base_CDialBias(**inputs)
|
116 |
+
with torch.no_grad():
|
117 |
+
out2 = MacBERT_base_COLD(**inputs)
|
118 |
+
|
119 |
+
out1 = torch.argmax(out1, dim=1).item()
|
120 |
+
out2 = torch.argmax(out2, dim=1).item()
|
121 |
+
out3 = answer[0]
|
122 |
+
|
123 |
+
# 分析结果
|
124 |
+
if out3 == "1":
|
125 |
+
if out1 == out2 == out3 == 1:
|
126 |
+
result = "这句话具有攻击性和社会偏见"
|
127 |
+
elif out1 == 0 and out2 == 1:
|
128 |
+
result = "这句话具有攻击性,但无社会偏见"
|
129 |
+
elif out1 == 1 and out2 == 0:
|
130 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
131 |
+
else:
|
132 |
+
result = "这句话具有攻击性"
|
133 |
+
elif out3 == "0":
|
134 |
+
if out1 == out2 == out3 == 0:
|
135 |
+
result = "这句话不具有攻击性和社会偏见"
|
136 |
+
elif out1 == 0 and out2 == 1:
|
137 |
+
result = "这句话具有攻击性,但无社会偏见"
|
138 |
+
elif out1 == 1 and out2 == 0:
|
139 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
140 |
+
else:
|
141 |
+
result = "这句话不具有攻击性"
|
142 |
+
return result
|
143 |
+
def run_command(command):
|
144 |
+
try:
|
145 |
+
subprocess.run(command, shell=True, check=True)
|
146 |
+
except subprocess.CalledProcessError as e:
|
147 |
+
print(f"Error executing command: {e}")
|
148 |
+
|
149 |
+
#创建网页
|
150 |
+
st.title("☁礼貌用语检测器")
|
151 |
+
|
152 |
+
with st.sidebar:
|
153 |
+
# 初始化session state
|
154 |
+
if 'logged_in' not in st.session_state:
|
155 |
+
st.session_state.logged_in = False
|
156 |
+
|
157 |
+
# 用户名和密码输入
|
158 |
+
username = st.sidebar.text_input('用户名')
|
159 |
+
password = st.sidebar.text_input('密码', type='password')
|
160 |
+
|
161 |
+
# 登录按钮
|
162 |
+
if st.sidebar.button('登录'):
|
163 |
+
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
|
164 |
+
if username == 'admin' and password == '12345':
|
165 |
+
st.session_state.logged_in = True
|
166 |
+
st.sidebar.success('登录成功!')
|
167 |
+
|
168 |
+
|
169 |
+
else:
|
170 |
+
st.error('用户名或密码错误,请重试。')
|
171 |
+
st.stop()
|
172 |
+
|
173 |
+
#清空消息
|
174 |
+
clear = st.button("清除")
|
175 |
+
if clear:
|
176 |
+
st.session_state.clear()
|
177 |
+
|
178 |
+
st.divider()
|
179 |
+
|
180 |
+
#输出内容
|
181 |
+
if "memory" not in st.session_state:
|
182 |
+
st.session_state['memory'] = []
|
183 |
+
st.session_state['message'] = [{"role": "ai",
|
184 |
+
"content": "你好!我是“礼貌用语检测器”。在这里,我能够帮助你检测中文语言中的攻击性和社会偏见内容,维护一个文明、和谐的交流环境。请告诉我你的需求,我会尽力提供帮助。"}]
|
185 |
+
|
186 |
+
for message in st.session_state['message']:
|
187 |
+
st.chat_message(message["role"]).write(message["content"])
|
188 |
+
|
189 |
+
#输入内容
|
190 |
+
text = st.chat_input()
|
191 |
+
|
192 |
+
#运行
|
193 |
+
if text and st.session_state.logged_in == True:
|
194 |
+
#将问题保存进message和memory
|
195 |
+
st.session_state["message"].append({"role": "human", "content": text})
|
196 |
+
st.session_state["memory"].append(text)
|
197 |
+
st.chat_message("human").write(text)
|
198 |
+
#得到回答
|
199 |
+
with st.spinner("AI正在思考中,请稍等..."):
|
200 |
+
result = load_models_and_predict(text, device)
|
201 |
+
|
202 |
+
#将回答保存进message和memory
|
203 |
+
st.session_state["message"].append({"role": "ai", "content": result})
|
204 |
+
st.session_state["memory"].append(result)
|
205 |
+
st.chat_message("ai").write(result)
|
206 |
+
|
207 |
+
elif text and st.session_state.logged_in == False:
|
208 |
+
st.error('请先登录!')
|
209 |
+
st.stop()
|
pages/文件式文本检测工具.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from transformers import BertTokenizer
|
9 |
+
import appbuilder
|
10 |
+
from transformers import BertModel
|
11 |
+
#加载预训练模型
|
12 |
+
pretrained = BertModel.from_pretrained('hfl/chinese-macbert-base')
|
13 |
+
#需要移动到cuda上
|
14 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
15 |
+
pretrained.to(device)
|
16 |
+
#不训练,不需要计算梯度
|
17 |
+
for param in pretrained.parameters():
|
18 |
+
param.requires_grad_(False)
|
19 |
+
|
20 |
+
#多头注意力机制
|
21 |
+
class MultiHeadAttention(nn.Module):
|
22 |
+
def __init__(self, hidden_size, num_heads):
|
23 |
+
super(MultiHeadAttention, self).__init__()
|
24 |
+
# 确保隐藏层特征数能够被头数整除
|
25 |
+
assert hidden_size % num_heads == 0
|
26 |
+
self.hidden_size = hidden_size
|
27 |
+
self.num_heads = num_heads
|
28 |
+
self.head_dim = hidden_size // num_heads # 计算每个头的维度
|
29 |
+
# 定义线性层,用于对查询、键、值进行线性变换
|
30 |
+
self.linear_q = nn.Linear(hidden_size, hidden_size)
|
31 |
+
self.linear_k = nn.Linear(hidden_size, hidden_size)
|
32 |
+
self.linear_v = nn.Linear(hidden_size, hidden_size)
|
33 |
+
self.linear_out = nn.Linear(hidden_size, hidden_size) # 定义输出线性层,用于整合多头注意力后的输出
|
34 |
+
|
35 |
+
def forward(self, x):
|
36 |
+
batch_size, seq_len, _ = x.size()
|
37 |
+
# 对输入进行线性变换,并将其分割为多个头
|
38 |
+
q = self.linear_q(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
39 |
+
k = self.linear_k(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
40 |
+
v = self.linear_v(x).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
41 |
+
# 计算注意力分数
|
42 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float))
|
43 |
+
attn_weights = F.softmax(scores, dim=-1) # 计算注意力权重
|
44 |
+
# 根据注意力权重对值进行加权求和
|
45 |
+
context = torch.matmul(attn_weights, v).transpose(1, 2).contiguous().view(batch_size, seq_len, self.hidden_size)
|
46 |
+
out = self.linear_out(context) # 整合多头注意力的输出
|
47 |
+
return out
|
48 |
+
|
49 |
+
class Model(nn.Module):
|
50 |
+
def __init__(self):
|
51 |
+
super(Model, self).__init__()
|
52 |
+
self.fc1 = nn.Linear(768, 512) # 第一层全连接层
|
53 |
+
self.fc2 = nn.Linear(512, 256) # 第二层全连接层
|
54 |
+
self.fc3 = nn.Linear(256, 2) # 第三层全连接层
|
55 |
+
self.dropout = nn.Dropout(p=0.5)
|
56 |
+
self.bn1 = nn.BatchNorm1d(512)
|
57 |
+
self.bn2 = nn.BatchNorm1d(256)
|
58 |
+
self.activation = nn.ReLU()
|
59 |
+
self.multihead_attention = MultiHeadAttention(hidden_size=768, num_heads=8) # 多头注意力模块
|
60 |
+
|
61 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
62 |
+
out = pretrained(input_ids=input_ids,
|
63 |
+
attention_mask=attention_mask,
|
64 |
+
token_type_ids=token_type_ids).last_hidden_state
|
65 |
+
|
66 |
+
# 应用多头注意力机制
|
67 |
+
out = self.multihead_attention(out)
|
68 |
+
out = out[:, 0] # 提取[CLS]标记的输出
|
69 |
+
|
70 |
+
out = self.activation(self.bn1(self.fc1(out)))
|
71 |
+
out = self.dropout(out)
|
72 |
+
out = self.activation(self.bn2(self.fc2(out)))
|
73 |
+
out = self.dropout(out)
|
74 |
+
out = self.fc3(out)
|
75 |
+
out = out.softmax(dim=1)
|
76 |
+
return out
|
77 |
+
|
78 |
+
|
79 |
+
def load_models_and_predict(text, device):
|
80 |
+
# 加载模型
|
81 |
+
MacBERT_base_CDialBias = torch.load('models\MacBERT-base-CDialBias.pth')
|
82 |
+
MacBERT_base_CDialBias.to(device)
|
83 |
+
MacBERT_base_COLD = torch.load('models\MacBERT-base-CDialBias.pth')
|
84 |
+
MacBERT_base_COLD.to(device)
|
85 |
+
|
86 |
+
# 获取密钥和ID
|
87 |
+
os.environ['APPBUILDER_TOKEN'] = "bce-v3/ALTAK-n2XgeA6FS3Q5E7Jab6UwE/850b44ebec64c4cad705986ab0b5e3df4b05d407"
|
88 |
+
app_id = "df881861-9fa6-40b6-b3bd-26df5f5d4b9a"
|
89 |
+
|
90 |
+
# 初始化agent实例
|
91 |
+
your_agent = appbuilder.AppBuilderClient(app_id)
|
92 |
+
|
93 |
+
# 创建会话id
|
94 |
+
conversation_id = your_agent.create_conversation()
|
95 |
+
|
96 |
+
# 加载字典和分词工具
|
97 |
+
tokenizer = BertTokenizer.from_pretrained('hfl/chinese-macbert-base')
|
98 |
+
|
99 |
+
# 对输入文本进行编码
|
100 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
101 |
+
|
102 |
+
# 将输入数据移动到相同的设备上
|
103 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
104 |
+
|
105 |
+
# 设置模型为评估模式
|
106 |
+
MacBERT_base_CDialBias.eval()
|
107 |
+
MacBERT_base_COLD.eval()
|
108 |
+
|
109 |
+
# 调用千帆api获取标签
|
110 |
+
msg = your_agent.run(conversation_id, text)
|
111 |
+
answer = msg.content.answer
|
112 |
+
|
113 |
+
# 进行预测
|
114 |
+
with torch.no_grad():
|
115 |
+
out1 = MacBERT_base_CDialBias(**inputs)
|
116 |
+
with torch.no_grad():
|
117 |
+
out2 = MacBERT_base_COLD(**inputs)
|
118 |
+
|
119 |
+
out1 = torch.argmax(out1, dim=1).item()
|
120 |
+
out2 = torch.argmax(out2, dim=1).item()
|
121 |
+
out3 = answer[0]
|
122 |
+
|
123 |
+
# 分析结果
|
124 |
+
if out3 == "1":
|
125 |
+
if out1 == out2 == out3 == 1:
|
126 |
+
result = "这句话具有攻击性和社会偏见"
|
127 |
+
elif out1 == 0 and out2 == 1:
|
128 |
+
result = "这句话具有攻击性,但无社会偏见"
|
129 |
+
elif out1 == 1 and out2 == 0:
|
130 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
131 |
+
else:
|
132 |
+
result = "这句话具有攻击性"
|
133 |
+
elif out3 == "0":
|
134 |
+
if out1 == out2 == out3 == 0:
|
135 |
+
result = "这句话不具有攻击性和社会偏见"
|
136 |
+
elif out1 == 0 and out2 == 1:
|
137 |
+
result = "这句话具有攻击性,但无社会偏见"
|
138 |
+
elif out1 == 1 and out2 == 0:
|
139 |
+
result = "这句话不具有攻击性,但具有社会偏见"
|
140 |
+
else:
|
141 |
+
result = "这句话不具有攻击性"
|
142 |
+
return result
|
143 |
+
|
144 |
+
# 页面配置
|
145 |
+
st.set_page_config(page_title="文件式文本检测工具")
|
146 |
+
st.title("批量检测攻击性和偏见")
|
147 |
+
|
148 |
+
with st.sidebar:
|
149 |
+
# 初始化session state
|
150 |
+
if 'logged_in' not in st.session_state:
|
151 |
+
st.session_state.logged_in = False
|
152 |
+
|
153 |
+
# 用户名和密码输入
|
154 |
+
username = st.sidebar.text_input('用户名')
|
155 |
+
password = st.sidebar.text_input('密码', type='password')
|
156 |
+
|
157 |
+
# 登录按钮
|
158 |
+
if st.sidebar.button('登录'):
|
159 |
+
# 这里可以添加验证逻辑,例如检查用户名和密码是否正确
|
160 |
+
if username == 'admin' and password == '12345':
|
161 |
+
st.session_state.logged_in = True
|
162 |
+
st.sidebar.success('登录成功!')
|
163 |
+
|
164 |
+
|
165 |
+
else:
|
166 |
+
st.error('用户名或密码错误,请重试。')
|
167 |
+
st.stop()
|
168 |
+
st.divider()
|
169 |
+
|
170 |
+
# 文件上传
|
171 |
+
file = st.file_uploader("上传你的CSV文件", type=["csv"])
|
172 |
+
|
173 |
+
if file is not None:
|
174 |
+
# 读取文件
|
175 |
+
df = pd.read_csv(file)
|
176 |
+
st.dataframe(df)
|
177 |
+
|
178 |
+
# 输入列名
|
179 |
+
column = st.text_input("请输入需要判断的内容的列名")
|
180 |
+
|
181 |
+
# 添加保存结果的选项
|
182 |
+
save_results = st.checkbox("保存结果为CSV文件")
|
183 |
+
|
184 |
+
if st.button("开始检测") and st.session_state.logged_in == True:
|
185 |
+
if column not in df.columns:
|
186 |
+
st.error(f"列名 '{column}' 不存在于数据集中,请检查并重新输入。")
|
187 |
+
else:
|
188 |
+
# 创建一个新的DataFrame来存储结果
|
189 |
+
results_df = pd.DataFrame(columns=['检测文本', '检测结果'])
|
190 |
+
|
191 |
+
# 显示进度条
|
192 |
+
progress_bar = st.progress(0)
|
193 |
+
|
194 |
+
# 初始化停止标志
|
195 |
+
stop_flag = False
|
196 |
+
|
197 |
+
# 添加停止按钮
|
198 |
+
stop_button = st.button("停止检测")
|
199 |
+
|
200 |
+
for i, (index, row) in enumerate(df.iterrows()):
|
201 |
+
|
202 |
+
# 如果用户点击了停止按钮
|
203 |
+
if stop_button:
|
204 |
+
stop_flag = True
|
205 |
+
break
|
206 |
+
# 获取特定列的内容
|
207 |
+
text = row[column]
|
208 |
+
|
209 |
+
# 进行预测
|
210 |
+
with st.spinner("AI正在思考中,请稍等..."):
|
211 |
+
result = load_models_and_predict(text, device)
|
212 |
+
|
213 |
+
# 将结果添加到新的DataFrame中
|
214 |
+
results_df.loc[i] = [text, result]
|
215 |
+
r = results_df.loc[i]
|
216 |
+
|
217 |
+
# 显示结果
|
218 |
+
st.dataframe(r)
|
219 |
+
|
220 |
+
st.divider()
|
221 |
+
|
222 |
+
# 更新进度条
|
223 |
+
progress_bar.progress((i + 1) / len(df))
|
224 |
+
|
225 |
+
# 完成处理
|
226 |
+
progress_bar.empty()
|
227 |
+
|
228 |
+
# 如果用户点击了停止按钮
|
229 |
+
if stop_flag:
|
230 |
+
st.warning("检测已停止。")
|
231 |
+
else:
|
232 |
+
st.success("所有文本已检测完成!")
|
233 |
+
|
234 |
+
# 如果用户选择了保存结果
|
235 |
+
if (save_results and not stop_flag) or st.button("保存结果为CSV文件"):
|
236 |
+
# 提供下载链接
|
237 |
+
csv_result = results_df.to_csv(index=False)
|
238 |
+
st.download_button(
|
239 |
+
label="下载结果",
|
240 |
+
data=csv_result,
|
241 |
+
file_name='results.csv',
|
242 |
+
mime='text/csv'
|
243 |
+
)
|
244 |
+
elif st.button("开始检测") and st.session_state.logged_in == False:
|
245 |
+
st.error("请先登录!")
|
246 |
+
st.stop()
|
247 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
appbuilder==0.0.20191210.1
|
2 |
+
appbuilder_sdk==0.9.0
|
3 |
+
pandas==2.2.2
|
4 |
+
streamlit==1.36.0
|
5 |
+
torch==2.3.1
|
6 |
+
transformers==4.42.4
|