Spaces:
Sleeping
Sleeping
File size: 2,409 Bytes
26896d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
Stock_Market = {'Year': [2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2022,2021,2021,2021,2021,2021,2021,2021,2021,2021,2021,2021,2021],
'Month': [12, 11,10,9,8,7,6,5,4,3,2,1,12,11,10,9,8,7,6,5,4,3,2,1],
'EconomicGrowth_Rate': [2.75,2.5,2.5,2.5,2.5,2.5,2.5,2.25,2.25,2.25,2,2,2,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75,1.75],
'Unemployment_Rate': [5.3,5.3,5.3,5.3,5.4,5.6,5.5,5.5,5.5,5.6,5.7,5.9,6,5.9,5.8,6.1,6.2,6.1,6.1,6.1,5.9,6.2,6.2,6.1],
'Stock_Index_Price': [1464,1394,1357,1293,1256,1254,1234,1195,1159,1167,1130,1075,1047,965,943,958,971,949,884,866,876,822,704,719]
}
df = pd.DataFrame(Stock_Market,columns = ['Year','Month','EconomicGrowth_Rate','Unemployment_Rate','Stock_Index_Price'])
x = df[['EconomicGrowth_Rate','Unemployment_Rate']]
y = df['Stock_Index_Price']
lr = linear_model.LinearRegression()
lr.fit(x,y)
st.title("Stock Index Prediction using Linear Regression")
st.text(" ")
st.text(" ")
st.text(" ")
st.image('stockindex.jpeg',width=700)
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.subheader("Relationship between Stock Index Price and Economic Growth Rate")
st.text(" ")
st.text(" ")
st.text(" ")
plt.figure(figsize=(9,6))
plt.xlabel("Economic Growth Rate")
plt.ylabel("Stock Index Price")
plt.scatter(df['EconomicGrowth_Rate'],df['Stock_Index_Price'],color='g')
plt.tight_layout()
st.set_option('deprecation.showPyplotGlobalUse',False)
st.pyplot()
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.text(" ")
st.subheader("Relationship between Stock Index Price and unemployment Rate")
st.text(" ")
st.text(" ")
st.text(" ")
plt.figure(figsize=(9,6))
plt.xlabel("Unemployment Rate")
plt.ylabel("Stock Index Price")
plt.scatter(df['Unemployment_Rate'],df['Stock_Index_Price'],color='g')
plt.tight_layout()
st.set_option('deprecation.showPyplotGlobalUse',False)
st.pyplot()
st.text(" ")
st.text(" ")
st.text(" ")
i = st.number_input("Enter Economic Growth Rate")
st.text(" ")
st.text(" ")
u = st.number_input("Enter Unemployment Rate")
st.text(" ")
st.text(" ")
if st.button("Predict"):
st.subheader("Predicted Value of Stock Index")
st.text(lr.predict([[i,u]]))
|