Spaces:
Runtime error
Runtime error
import json | |
import os | |
import uuid | |
import pandas as pd | |
import streamlit as st | |
import argparse | |
import traceback | |
from typing import Dict | |
import requests | |
from utils.utils import load_data_split | |
from utils.normalizer import post_process_sql | |
from nsql.database import NeuralDB | |
from nsql.nsql_exec import NSQLExecutor | |
from nsql.nsql_exec_python import NPythonExecutor | |
from generation.generator import Generator | |
import time | |
st.set_page_config( | |
page_title="Binder Demo", | |
page_icon="π", | |
layout="wide", | |
initial_sidebar_state="expanded", | |
menu_items={ | |
'About': "Check out our [website](https://lm-code-binder.github.io/) for more details!" | |
} | |
) | |
ROOT_DIR = os.path.join(os.path.dirname(__file__), "./") | |
# todo: Add more binder questions, need careful cherry-picks | |
EXAMPLE_TABLES = { | |
"Estonia men's national volleyball team": (558, "what is the number of players from france?"), | |
# 'how old is kert toobal' | |
"Highest mountain peaks of California": (5, "which is the lowest mountain?"), | |
# 'which mountain is in the most north place?' | |
"2010β11 UAB Blazers men's basketball team": (1, "how many players come from alabama?"), | |
# 'how many players are born after 1996?' | |
"Nissan SR20DET": (438, "which car has power more than 170 kw?"), | |
# '' | |
} | |
def load_data(): | |
return load_data_split("missing_squall", "validation") | |
def get_key(): | |
# print the public IP of the demo machine | |
ip = requests.get('https://checkip.amazonaws.com').text.strip() | |
print(ip) | |
URL = "http://54.242.37.195:8080/api/predict" | |
# The springboard machine we built to protect the key, 20217 is the birthday of Tianbao's girlfriend | |
# we will only let the demo machine have the access to the keys | |
one_key = requests.post(url=URL, json={"data": "Hi, binder server. Give me a key!"}).json()['data'][0] | |
return one_key | |
def read_markdown(path): | |
with open(path, "r") as f: | |
output = f.read() | |
st.markdown(output, unsafe_allow_html=True) | |
def generate_binder_program(_args, _generator, _data_item): | |
n_shots = _args.n_shots | |
few_shot_prompt = _generator.build_few_shot_prompt_from_file( | |
file_path=_args.prompt_file, | |
n_shots=n_shots | |
) | |
generate_prompt = _generator.build_generate_prompt( | |
data_item=_data_item, | |
generate_type=(_args.generate_type,) | |
) | |
prompt = few_shot_prompt + "\n\n" + generate_prompt | |
# Ensure the input length fit Codex max input tokens by shrinking the n_shots | |
max_prompt_tokens = _args.max_api_total_tokens - _args.max_generation_tokens | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=os.path.join(ROOT_DIR, "utils", "gpt2")) | |
while len(tokenizer.tokenize(prompt)) >= max_prompt_tokens: | |
n_shots -= 1 | |
assert n_shots >= 0 | |
few_shot_prompt = _generator.build_few_shot_prompt_from_file( | |
file_path=_args.prompt_file, | |
n_shots=n_shots | |
) | |
prompt = few_shot_prompt + "\n\n" + generate_prompt | |
response_dict = _generator.generate_one_pass( | |
prompts=[("0", prompt)], # the "0" is the place taker, take effect only when there are multi threads | |
verbose=_args.verbose | |
) | |
print(response_dict) | |
return response_dict["0"][0][0] | |
def remove_row_id(table): | |
new_table = {"header": [], "rows": []} | |
header: list = table['header'] | |
rows = table['rows'] | |
if not 'row_id' in header: | |
return table | |
new_table['header'] = header[1:] | |
new_table['rows'] = [row[1:] for row in rows] | |
return new_table | |
# Set up | |
import nltk | |
nltk.download('punkt') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--prompt_file', type=str, default='templates/prompts/prompt_wikitq_v3.txt') | |
# Binder program generation options | |
parser.add_argument('--prompt_style', type=str, default='create_table_select_3_full_table', | |
choices=['create_table_select_3_full_table', | |
'create_table_select_full_table', | |
'create_table_select_3', | |
'create_table', | |
'create_table_select_3_full_table_w_all_passage_image', | |
'create_table_select_3_full_table_w_gold_passage_image', | |
'no_table']) | |
parser.add_argument('--generate_type', type=str, default='nsql', | |
choices=['nsql', 'sql', 'answer', 'npython', 'python']) | |
parser.add_argument('--n_shots', type=int, default=14) | |
parser.add_argument('--seed', type=int, default=42) | |
# Codex options | |
# todo: Allow adjusting Codex parameters | |
parser.add_argument('--engine', type=str, default="code-davinci-002") | |
parser.add_argument('--max_generation_tokens', type=int, default=512) | |
parser.add_argument('--max_api_total_tokens', type=int, default=8001) | |
parser.add_argument('--temperature', type=float, default=0.) | |
parser.add_argument('--sampling_n', type=int, default=1) | |
parser.add_argument('--top_p', type=float, default=1.0) | |
parser.add_argument('--stop_tokens', type=str, default='\n\n', | |
help='Split stop tokens by ||') | |
parser.add_argument('--qa_retrieve_pool_file', type=str, default='templates/qa_retrieve_pool.json') | |
# debug options | |
parser.add_argument('-v', '--verbose', action='store_false') | |
args = parser.parse_args() | |
keys = [get_key()] | |
# The title | |
st.markdown("# Binder Playground") | |
# Demo description | |
read_markdown('resources/demo_description.md') | |
# Upload tables/Switch tables | |
st.markdown('### Try Binder!') | |
col1, _ = st.columns(2) | |
with col1: | |
selected_table_title = st.selectbox( | |
"Select an example table (We use WikiTQ examples for this demo. But task inputs can include free-form texts and images as well)", | |
( | |
"Estonia men's national volleyball team", | |
"Highest mountain peaks of California", | |
"2010β11 UAB Blazers men's basketball team", | |
"Nissan SR20DET", | |
) | |
) | |
# Here we just use ourselves' | |
data_items = load_data() | |
data_item = data_items[EXAMPLE_TABLES[selected_table_title][0]] | |
table = data_item['table'] | |
header, rows, title = table['header'], table['rows'], table['page_title'] | |
db = NeuralDB( | |
[{"title": title, "table": table}]) # todo: try to cache this db instead of re-creating it again and again. | |
df = db.get_table_df() | |
st.markdown("Title: {}".format(title)) | |
st.dataframe(df) | |
# Let user input the question | |
with col1: | |
selected_language = st.selectbox( | |
"Select a target Binder program", | |
("Binder-SQL", "Binder-Python"), | |
) | |
if selected_language == 'Binder-SQL': | |
args.prompt_file = 'templates/prompts/prompt_wikitq_v3.txt' | |
args.generate_type = 'nsql' | |
elif selected_language == 'Binder-Python': | |
args.prompt_file = 'templates/prompts/prompt_wikitq_python_simplified_v4.txt' | |
args.generate_type = 'npython' | |
else: | |
raise ValueError(f'{selected_language} language is not supported.') | |
question = st.text_input( | |
"Ask a question about the table:", | |
value=EXAMPLE_TABLES[selected_table_title][1], | |
) | |
button = st.button("Run Binder!") | |
if not button: | |
st.stop() | |
# Print the question we just input. | |
st.subheader("Question") | |
st.markdown("{}".format(question)) | |
# Generate Binder Program | |
generator = Generator(args, keys=keys) | |
with st.spinner("Generating Binder program to solve the question...will be finished in 10s, please refresh the page if not"): | |
binder_program = generate_binder_program(args, generator, | |
{"question": question, "table": db.get_table_df(), "title": title}) | |
# Do execution | |
st.subheader("Binder program") | |
if selected_language == 'Binder-SQL': | |
# Post process | |
binder_program = post_process_sql(binder_program, df, selected_table_title, True) | |
st.markdown('```sql\n' + binder_program + '\n```') | |
executor = NSQLExecutor(args, keys=keys) | |
elif selected_language == 'Binder-Python': | |
st.code(binder_program, language='python') | |
executor = NPythonExecutor(args, keys=keys) | |
db = db.get_table_df() | |
else: | |
raise ValueError(f'{selected_language} language is not supported.') | |
try: | |
stamp = '{}'.format(uuid.uuid4()) | |
os.makedirs('tmp_for_vis/', exist_ok=True) | |
with st.spinner("Executing... will be finished in 30s, please refresh the page if not"): | |
exec_answer = executor.nsql_exec(stamp, binder_program, db) | |
if selected_language == 'Binder-SQL': | |
with open("tmp_for_vis/{}_tmp_for_vis_steps.txt".format(stamp), "r") as f: | |
steps = json.load(f) | |
for i, step in enumerate(steps): | |
col1, _, _ = st.columns([7, 1, 2]) | |
with col1: | |
st.markdown(f'**Step #{i + 1}**') | |
col1, col1_25, col1_5, col2, col3 = st.columns([4, 1, 2, 1, 2]) | |
with col1: | |
st.markdown('```sql\n' + step + '\n```') | |
with col1_25: | |
st.markdown("executes\non") | |
with col1_5: | |
if i == len(steps) - 1: | |
st.markdown("Full table") | |
else: | |
with open("tmp_for_vis/{}_result_step_{}_input.txt".format(stamp, i), "r") as f: | |
sub_tables_input = json.load(f) | |
for sub_table in sub_tables_input: | |
sub_table_to_print = remove_row_id(sub_table) | |
st.table(pd.DataFrame(sub_table_to_print['rows'], columns=sub_table_to_print['header'])) | |
with col2: | |
st.markdown('$\\rightarrow$') | |
if i == len(steps) - 1: | |
# The final step | |
st.markdown("{} Interpreter".format(selected_language.replace("Binder-", ""))) | |
else: | |
st.markdown("GPT3 Codex") | |
with st.spinner('...'): | |
time.sleep(1) | |
with open("tmp_for_vis/{}_result_step_{}.txt".format(stamp, i), "r") as f: | |
result_in_this_step = json.load(f) | |
with col3: | |
if isinstance(result_in_this_step, Dict): | |
rows = remove_row_id(result_in_this_step)["rows"] | |
header = remove_row_id(result_in_this_step)["header"] | |
if isinstance(header, list): | |
for idx in range(len(header)): | |
if header[idx].startswith('col_'): | |
header[idx] = step | |
st.table(pd.DataFrame(rows, columns=header)) | |
# hard code here, use use_container_width after the huggingface update their streamlit version | |
else: | |
st.markdown(result_in_this_step) | |
with st.spinner('...'): | |
time.sleep(1) | |
elif selected_language == 'Binder-Python': | |
pass | |
if isinstance(exec_answer, list) and len(exec_answer) == 1: | |
exec_answer = exec_answer[0] | |
# st.subheader(f'Execution answer') | |
st.text('') | |
st.markdown(f"**Execution answer:** {exec_answer}") | |
# todo: Remove tmp files | |
except Exception as e: | |
traceback.print_exc() | |