Spaces:
Runtime error
Runtime error
File size: 12,646 Bytes
44db343 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
# coding: utf8
import re
from normalize import chuan_hoa_dau_tu_tieng_viet
import numpy as np
from tqdm import tqdm
import textdistance
import json
from copy import copy
with open("common-vietnamese-syllables.txt", "r", encoding="utf-8") as file:
vi_syllables = [line.strip("\n") for line in file.readlines()]
vi_syllables_new = []
for syllable in vi_syllables:
normalized = chuan_hoa_dau_tu_tieng_viet(syllable)
vi_syllables_new.append(normalized)
regex_nguyen_am_don = "ộ|ặ|ằ|ụ|ầ|a|ũ|á|ể|ỡ|ủ|y|ở|ế|ẵ|ệ|é|ẹ|â|ề|ê|ọ|ờ|ẳ|ợ|ỷ|ữ|ị|e|u|ò|ẫ|i|ỉ|ẩ|ẽ|õ|ỹ|ô|ỵ|ồ|ú|í|ó|ỗ|ã|ẻ|ù|ă|ơ|ứ|ậ|ử|ừ|à|ĩ|ả|ố|ớ|ự|ắ|o|ý|ỳ|ư|ấ|ễ|ạ|ỏ|ổ|è|ì"
regex_nguyen_am_doi = "uằ|iê|ấu|ượ|ùy|ạy|uỹ|ươ|ỗi|yệ|ụy|ẫy|oà|ái|ói|uồ|uỷ|oỏ|ệu|ue|oi|ậu|oè|uã|ãi|òi|ơi|ựa|ụi|iể|oá|ìa|ĩu|uẹ|ìu|ầu|ỏe|ối|uẳ|ịa|òe|ai|ọe|yể|ày|ỉu|uỵ|uể|óe|ỉa|ũa|ườ|uè|êu|ẹo|uá|ỏi|uấ|ưỡ|ội|au|iề|ửu|ọi|ảu|uẽ|ầy|ẻo|ao|yế|uẻ|uơ|ưở|iế|uở|ịu|ủa|ẫu|uặ|oằ|oò|ạu|uỳ|ạo|oọ|ưa|oẹ|ui|uậ|ủi|áo|óa|ẩu|ảy|oẵ|áu|ựu|uô|ửa|ễu|uâ|oạ|uổ|uê|ùi|ếu|ời|iu|uo|oé|yễ|oẳ|uớ|ay|iễ|ủy|ướ|oó|eo|ũi|oả|ua|ỏa|ấy|uố|èo|oo|úy|ẩy|ồi|yề|ẽo|uẫ|ứu|ãy|ổi|ía|ảo|ué|uờ|ùa|ia|ều|oa|iệ|àu|õa|oắ|uắ|uả|ứa|ởi|ụa|ũy|òa|íu|éo|oã|uă|uộ|ữu|úa|ải|ỡi|ừu|ểu|oe|õi|ọa|ừa|uệ|uý|uó|ào|uà|ây|oă|uạ|ữa|oặ|uy|ợi|uẩ|uỗ|ão|uế|ưu|ửi|ại|âu|ới|uầ|ĩa|úi|oẻ|ôi|ài|uề|yê|ậy|áy"
regex_nguyen_am_ba = "uỷu|uây|ươu|iệu|yếu|yểu|uyế|uyệ|uyề|ưỡi|uôi|ượi|uổi|oay|uào|iễu|oeo|oèo|uỗi|oai|uấy|oái|uỵu|uyể|uồi|oáy|yều|oẹo|uẫy|ưởi|iểu|uầy|iêu|uối|uyễ|ưới|iều|oài|uao|ươi|yêu|ười|uya|oải|ướu|uội|oại|iếu|ượu|uẩy|uyê|uậy"
all_phu_am_dau = {'', 'gh', 'q', 'kh', 'p', 'm', 'qu', 'n', 'b', 'g', 't', 'ch', 'th', 'k', 'đ', 'r', 'ph', 'ngh', 'gi', 'tr', 's', 'l', 'h', 'nh', 'c', 'ng', 'd', 'v', 'x'}
all_phu_am_cuoi = {'', 'ng', 'nh', 't', 'ch', 'c', 'p', 'm', 'k', 'n'}
all_nguyen_am_don = "ộ|ặ|ằ|ụ|ầ|a|ũ|á|ể|ỡ|ủ|y|ở|ế|ẵ|ệ|é|ẹ|â|ề|ê|ọ|ờ|ẳ|ợ|ỷ|ữ|ị|e|u|ò|ẫ|i|ỉ|ẩ|ẽ|õ|ỹ|ô|ỵ|ồ|ú|í|ó|ỗ|ã|ẻ|ù|ă|ơ|ứ|ậ|ử|ừ|à|ĩ|ả|ố|ớ|ự|ắ|o|ý|ỳ|ư|ấ|ễ|ạ|ỏ|ổ|è|ì".split("|")
all_nguyen_am_doi = "uằ|iê|ấu|ượ|ùy|ạy|uỹ|ươ|ỗi|yệ|ụy|ẫy|oà|ái|ói|uồ|uỷ|oỏ|ệu|ue|oi|ậu|oè|uã|ãi|òi|ơi|ựa|ụi|iể|oá|ìa|ĩu|uẹ|ìu|ầu|ỏe|ối|uẳ|ịa|òe|ai|ọe|yể|ày|ỉu|uỵ|uể|óe|ỉa|ũa|ườ|uè|êu|ẹo|uá|ỏi|uấ|ưỡ|ội|au|iề|ửu|ọi|ảu|uẽ|ầy|ẻo|ao|yế|uẻ|uơ|ưở|iế|uở|ịu|ủa|ẫu|uặ|oằ|oò|ạu|uỳ|ạo|oọ|ưa|oẹ|ui|uậ|ủi|áo|óa|ẩu|ảy|oẵ|áu|ựu|uô|ửa|ễu|uâ|oạ|uổ|uê|ùi|ếu|ời|iu|uo|oé|yễ|oẳ|uớ|ay|iễ|ủy|ướ|oó|eo|ũi|oả|ua|ỏa|ấy|uố|èo|oo|úy|ẩy|ồi|yề|ẽo|uẫ|ứu|ãy|ổi|ía|ảo|ué|uờ|ùa|ia|ều|oa|iệ|àu|õa|oắ|uắ|uả|ứa|ởi|ụa|ũy|òa|íu|éo|oã|uă|uộ|ữu|úa|ải|ỡi|ừu|ểu|oe|õi|ọa|ừa|uệ|uý|uó|ào|uà|ây|oă|uạ|ữa|oặ|uy|ợi|uẩ|uỗ|ão|uế|ưu|ửi|ại|âu|ới|uầ|ĩa|úi|oẻ|ôi|ài|uề|yê|ậy|áy".split("|")
all_nguyen_am_ba = "uỷu|uây|ươu|iệu|yếu|yểu|uyế|uyệ|uyề|ưỡi|uôi|ượi|uổi|oay|uào|iễu|oeo|oèo|uỗi|oai|uấy|oái|uỵu|uyể|uồi|oáy|yều|oẹo|uẫy|ưởi|iểu|uầy|iêu|uối|uyễ|ưới|iều|oài|uao|ươi|yêu|ười|uya|oải|ướu|uội|oại|iếu|ượu|uẩy|uyê|uậy".split("|")
confusion_set = dict()
special_list = set()
for syllable in tqdm(vi_syllables_new):
# print(syllable)
if syllable[0:2] in ["qu", "gi"]:
special_list.add(syllable)
# print(f"Ignore {syllable}")
continue
confusion_set[syllable] = dict()
syllable_candidates = confusion_set[syllable]
syllable_candidates['phu_am_dau'] = set()
syllable_candidates['nguyen_am'] = set()
syllable_candidates['phu_am_cuoi'] = set()
if len(re.findall(regex_nguyen_am_ba, syllable)) != 0:
result = re.findall(regex_nguyen_am_ba, syllable)
nguyen_am = result[0]
elif len(re.findall(regex_nguyen_am_doi, syllable)) != 0:
result = re.findall(regex_nguyen_am_doi, syllable)
nguyen_am = result[0]
elif len(re.findall(regex_nguyen_am_don, syllable)) != 0:
result = re.findall(regex_nguyen_am_don, syllable)
nguyen_am = result[0]
else:
raise Exception("Khong co nguyen am")
phu_am_dau, phu_am_cuoi = "", ""
if len(re.findall(f"(.+){nguyen_am}", syllable)) !=0 :
result = re.findall(f"(.+){nguyen_am}", syllable)
phu_am_dau = result[0]
if len(re.findall(f"{nguyen_am}(.+)", syllable)) !=0 :
result = re.findall(f"{nguyen_am}(.+)", syllable)
phu_am_cuoi = result[0]
### Error thay đổi phụ âm đầu
for candidate in all_phu_am_dau:
if "".join([candidate, nguyen_am, phu_am_cuoi]) in vi_syllables_new:
syllable_candidates['phu_am_dau'].add("".join([candidate, nguyen_am, phu_am_cuoi]))
### Error thay đổi nguyên âm
all_nguyen_am = all_nguyen_am_don + all_nguyen_am_doi + all_nguyen_am_ba
for candidate in all_nguyen_am:
if "".join([phu_am_dau, candidate, phu_am_cuoi]) in vi_syllables_new:
syllable_candidates['nguyen_am'].add("".join([phu_am_dau, candidate, phu_am_cuoi]))
### Error thay đổi phụ âm cuối
for candidate in all_phu_am_cuoi:
if "".join([phu_am_dau, nguyen_am, candidate]) in vi_syllables_new:
syllable_candidates['phu_am_cuoi'].add("".join([phu_am_dau, nguyen_am, candidate]))
for syllable in tqdm(special_list):
if len(re.findall(regex_nguyen_am_don, syllable)) > 1:
phu_am_dau = syllable[0:2]
remained = syllable[2:]
else:
phu_am_dau = syllable[0]
remained = syllable[1:]
confusion_set[syllable] = dict()
syllable_candidates = confusion_set[syllable]
syllable_candidates['phu_am_dau'] = set()
syllable_candidates['nguyen_am'] = set()
syllable_candidates['phu_am_cuoi'] = set()
if len(re.findall(regex_nguyen_am_ba, remained)) != 0:
result = re.findall(regex_nguyen_am_ba, remained)
nguyen_am = result[0]
elif len(re.findall(regex_nguyen_am_doi, remained)) != 0:
result = re.findall(regex_nguyen_am_doi, remained)
nguyen_am = result[0]
elif len(re.findall(regex_nguyen_am_don, remained)) != 0:
result = re.findall(regex_nguyen_am_don, remained)
nguyen_am = result[0]
else:
nguyen_am, phu_am_cuoi = "", ""
phu_am_cuoi = ""
if nguyen_am != "" and len(re.findall(f"{nguyen_am}(.+)", remained)) !=0 :
result = re.findall(f"{nguyen_am}(.+)", remained)
phu_am_cuoi = result[0]
### Error thay đổi phụ âm đầu
for candidate in all_phu_am_dau:
if "".join([candidate, nguyen_am, phu_am_cuoi]) in vi_syllables_new:
syllable_candidates['phu_am_dau'].add("".join([candidate, nguyen_am, phu_am_cuoi]))
### Error thay đổi nguyên âm
all_nguyen_am = all_nguyen_am_don + all_nguyen_am_doi + all_nguyen_am_ba
for candidate in all_nguyen_am:
if "".join([phu_am_dau, candidate, phu_am_cuoi]) in vi_syllables_new:
syllable_candidates['nguyen_am'].add("".join([phu_am_dau, candidate, phu_am_cuoi]))
### Error thay đổi phụ âm cuối
for candidate in all_phu_am_cuoi:
if "".join([phu_am_dau, nguyen_am, candidate]) in vi_syllables_new:
syllable_candidates['phu_am_cuoi'].add("".join([phu_am_dau, nguyen_am, candidate]))
for key in tqdm(confusion_set.keys()):
for key_2_level in confusion_set[key].keys():
try:
confusion_set[key][key_2_level].remove(key)
except:
pass
for key in tqdm(confusion_set.keys()):
for key_2_level in confusion_set[key].keys():
candidates_to_remove = []
for candidate in confusion_set[key][key_2_level]:
similarity = textdistance.damerau_levenshtein.normalized_similarity(key, candidate)
if similarity < 0.5:
candidates_to_remove.append(candidate)
for candidate in candidates_to_remove:
confusion_set[key][key_2_level].remove(candidate)
keyboard_neighbor = {'a': 'áàảãạ',
'ă': 'ắằẳẵặ',
'â': 'ấầẩẫậ',
'á': 'aàảãạ',
'à': 'aáảãạ',
'ả': 'aáàãạ',
'ã': 'aáàảạ',
'ạ': 'aáàảã',
'ắ': 'ăằẳẵặ',
'ằ': 'ăắẳẵặ',
'ẳ': 'ăắằẵặ',
'ặ': 'ăắằẳẵ',
'ẵ': 'ăắằẳặ',
'ấ': 'âầẩẫậ',
'ầ': 'âấẩẫậ',
'ẩ': 'âấầẫậ',
'ẫ': 'âấầẩậ',
'ậ': 'âấầẩẫ',
'e': 'èéẻẽẹ',
'é': 'eèẻẽẹ',
'è': 'eéẻẽẹ',
'ẻ': 'eéèẽẹ',
'ẽ': 'eéèẻẹ',
'ẹ': 'eéèẻẽ',
'ê': 'ếềểễệ',
'ế': 'êềểễệ',
'ề': 'êếểễệ',
'ể': 'êếềễệ',
'ễ': 'êếềểệ',
'ệ': 'êếềểễ',
'i': 'íìỉĩị',
'í': 'iìỉĩị',
'ì': 'iíỉĩị',
'ỉ': 'iíìĩị',
'ĩ': 'iíìỉị',
'ị': 'iíìỉĩ',
'o': 'òóỏọõ',
'ó': 'oòỏọõ',
'ò': 'oóỏọõ',
'ỏ': 'oóòọõ',
'õ': 'oóòỏọ',
'ọ': 'oóòỏõ',
'ô': 'ốồổỗộ',
'ố': 'ôồổỗộ',
'ồ': 'ôốổỗộ',
'ổ': 'ôốồỗộ',
'ộ': 'ôốồổỗ',
'ỗ': 'ôốồổộ',
'ơ': 'ớờởợỡ',
'ớ': 'ơờởợỡ',
'ờ': 'ơớởợỡ',
'ở': 'ơớờợỡ',
'ợ': 'ơớờởỡ',
'ỡ': 'ơớờởợ',
'u': 'úùủũụ',
'ú': 'uùủũụ',
'ù': 'uúủũụ',
'ủ': 'uúùũụ',
'ũ': 'uúùủụ',
'ụ': 'uúùủũ',
'ư': 'ứừữửự',
'ứ': 'ưừữửự',
'ừ': 'ưứữửự',
'ử': 'ưứừữự',
'ữ': 'ưứừửự',
'ự': 'ưứừữử',
'y': 'ýỳỷỵỹ',
'ý': 'yỳỷỵỹ',
'ỳ': 'yýỷỵỹ',
'ỷ': 'yýỳỵỹ',
'ỵ': 'yýỳỷỹ',
'ỹ': 'yýỳỷỵ'}
pattern = "(" + "|".join(keyboard_neighbor.keys()) + "){1}"
def make_accent_change_candidates(text):
result = re.findall(pattern, text)
candidates = []
for candidate in result:
[candidates.append(text.replace(candidate, x)) for x in keyboard_neighbor[candidate]]
return set(candidates)
typo = json.load(open("../noising_resources/typo.json", "r", encoding="utf-8"))
typo_pattern = "(" + "|".join(typo.keys()) + "){1}"
accent_pattern = "(s|f|r|x|j|1|2|3|4|5){1}"
def convert_to_non_telex(text):
word = copy(text)
candidates = re.findall(typo_pattern, text)
for candidate in candidates:
replaced = typo[candidate][0]
# Move accent to the end of text
if len(re.findall(accent_pattern, replaced)) != 0:
word = re.sub(candidate, replaced[0:-1], word)
word += replaced[-1]
else:
word = re.sub(candidate, replaced, word)
return word
def keep_1_distance_candidates(text, nguyen_am_errors : set):
nguyen_am_errors = list(nguyen_am_errors)
text = convert_to_non_telex(text)
distances = [textdistance.damerau_levenshtein(text, convert_to_non_telex(error)) for error in nguyen_am_errors]
indies_to_keep = np.where(np.array(distances) <= 1)[0]
return set([nguyen_am_errors[i] for i in indies_to_keep])
for key in tqdm(confusion_set.keys()):
candidates = make_accent_change_candidates(key)
one_distance_candidates = keep_1_distance_candidates(key, confusion_set[key]['nguyen_am'])
candidates = candidates.union(one_distance_candidates)
high_probs_list = candidates.intersection(confusion_set[key]['nguyen_am'])
lower_probs_list = confusion_set[key]['nguyen_am'].difference(high_probs_list)
confusion_set[key]['nguyen_am'] = [high_probs_list, lower_probs_list]
for key in tqdm(confusion_set.keys()):
confusion_set[key]['nguyen_am'] = [list(confusion_set[key]['nguyen_am'][0]), list(confusion_set[key]['nguyen_am'][1])]
confusion_set[key]['phu_am_dau'] = list(confusion_set[key]['phu_am_dau'])
confusion_set[key]['phu_am_cuoi'] = list(confusion_set[key]['phu_am_cuoi'])
with open("../noising_resources/confusion_set.json", "w+", encoding="utf-8") as outfile:
print(confusion_set, file = outfile)
|