Spaces:
Sleeping
Sleeping
import streamlit as st | |
from tensorflow.keras.models import load_model | |
from PIL import Image | |
import numpy as np | |
model = load_model('skin_canser_cnn_model.h5') | |
def process_image(img): | |
img= img.resize((170,170)) | |
img = np.array(img) | |
img = img/255.0 # normalize | |
img = np.expand_dims(img,axis=0) | |
return img | |
st.title('Skin Canser Classification :cancer:') | |
st.write('Upload Test Image') | |
file = st.file_uploader('Enter Image', type=['jpg','png','jpeg']) | |
if file is not None: | |
img=Image.open(file) | |
st.image(img,caption='Uploaded Image') | |
image = process_image(img) | |
prediction = model.predict(image) | |
predicted_class = np.argmax(prediction) | |
class_names = ['Canser !','Not Canser !'] | |
st.write(class_names[predicted_class]) |