hocuf's picture
Upload 3 files
d60c1ba verified
raw
history blame
792 Bytes
import streamlit as st
from tensorflow.keras.models import load_model
from PIL import Image
import numpy as np
model = load_model('skin_canser_cnn_model.h5')
def process_image(img):
img= img.resize((170,170))
img = np.array(img)
img = img/255.0 # normalize
img = np.expand_dims(img,axis=0)
return img
st.title('Skin Canser Classification :cancer:')
st.write('Upload Test Image')
file = st.file_uploader('Enter Image', type=['jpg','png','jpeg'])
if file is not None:
img=Image.open(file)
st.image(img,caption='Uploaded Image')
image = process_image(img)
prediction = model.predict(image)
predicted_class = np.argmax(prediction)
class_names = ['Canser !','Not Canser !']
st.write(class_names[predicted_class])