hocuf commited on
Commit
a948d99
·
verified ·
1 Parent(s): 0adaf20

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -29
app.py CHANGED
@@ -1,30 +1,30 @@
1
- import streamlit as st
2
- from tensorflow.keras.models import load_model
3
- from PIL import Image
4
- import numpy as np
5
-
6
- model = load_model('skin_canser_cnn_model.h5')
7
-
8
-
9
- def process_image(img):
10
- img= img.resize((170,170))
11
- img = np.array(img)
12
- img = img/255.0 # normalize
13
- img = np.expand_dims(img,axis=0)
14
- return img
15
-
16
-
17
- st.title('Skin Canser Classification :cancer:')
18
- st.write('Upload Test Image')
19
-
20
-
21
- file = st.file_uploader('Enter Image', type=['jpg','png','jpeg'])
22
-
23
- if file is not None:
24
- img=Image.open(file)
25
- st.image(img,caption='Uploaded Image')
26
- image = process_image(img)
27
- prediction = model.predict(image)
28
- predicted_class = np.argmax(prediction)
29
- class_names = ['Canser !','Not Canser !']
30
  st.write(class_names[predicted_class])
 
1
+ import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ model = load_model('skin_cancer_cnn_model.h5')
7
+
8
+
9
+ def process_image(img):
10
+ img= img.resize((170,170))
11
+ img = np.array(img)
12
+ img = img/255.0 # normalize
13
+ img = np.expand_dims(img,axis=0)
14
+ return img
15
+
16
+
17
+ st.title('Skin Cancer Classification :cancer:')
18
+ st.write('Upload Test Image')
19
+
20
+
21
+ file = st.file_uploader('Enter Image', type=['jpg','png','jpeg'])
22
+
23
+ if file is not None:
24
+ img=Image.open(file)
25
+ st.image(img,caption='Uploaded Image')
26
+ image = process_image(img)
27
+ prediction = model.predict(image)
28
+ predicted_class = np.argmax(prediction)
29
+ class_names = ['Cancer !','Not Cancer !']
30
  st.write(class_names[predicted_class])