import streamlit as st from tensorflow.keras.models import load_model from PIL import Image import numpy as np model = load_model('skin_canser_cnn_model.h5') def process_image(img): img= img.resize((170,170)) img = np.array(img) img = img/255.0 # normalize img = np.expand_dims(img,axis=0) return img st.title('Skin Canser Classification :cancer:') st.write('Upload Test Image') file = st.file_uploader('Enter Image', type=['jpg','png','jpeg']) if file is not None: img=Image.open(file) st.image(img,caption='Uploaded Image') image = process_image(img) prediction = model.predict(image) predicted_class = np.argmax(prediction) class_names = ['Canser !','Not Canser !'] st.write(class_names[predicted_class])