Spaces:
Sleeping
Sleeping
import torch | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import io | |
import matplotlib | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
import mpl_toolkits.mplot3d.axes3d as p3 | |
from textwrap import wrap | |
import imageio | |
def plot_3d_motion(args, figsize=(10, 10), fps=120, radius=4): | |
matplotlib.use('Agg') | |
joints, out_name, title = args | |
title_sp = title.split(' ') | |
if len(title_sp) > 20: | |
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:20]), ' '.join(title_sp[20:])]) | |
elif len(title_sp) > 10: | |
title = '\n'.join([' '.join(title_sp[:10]), ' '.join(title_sp[10:])]) | |
data = joints.copy().reshape(len(joints), -1, 3) | |
nb_joints = joints.shape[1] | |
smpl_kinetic_chain = [ | |
[0, 11, 12, 13, 14, 15], [0, 16, 17, 18, 19, 20], [0, 1, 2, 3, 4], | |
[3, 5, 6, 7], [3, 8, 9, 10] | |
] if nb_joints == 21 else [[0, 2, 5, 8, 11], [0, 1, 4, 7, 10], | |
[0, 3, 6, 9, 12, 15], [9, 14, 17, 19, 21], | |
[9, 13, 16, 18, 20]] | |
limits = 1000 if nb_joints == 21 else 2 | |
MINS = data.min(axis=0).min(axis=0) | |
MAXS = data.max(axis=0).max(axis=0) | |
colors = [ | |
'red', 'blue', 'black', 'red', 'blue', 'darkblue', 'darkblue', | |
'darkblue', 'darkblue', 'darkblue', 'darkred', 'darkred', 'darkred', | |
'darkred', 'darkred' | |
] | |
frame_number = data.shape[0] | |
# print(data.shape) | |
height_offset = MINS[1] | |
data[:, :, 1] -= height_offset | |
trajec = data[:, 0, [0, 2]] | |
data[..., 0] -= data[:, 0:1, 0] | |
data[..., 2] -= data[:, 0:1, 2] | |
def update(index): | |
def init(): | |
ax.set_xlim3d([-radius / 2, radius / 2]) | |
ax.set_ylim3d([0, radius]) | |
ax.set_zlim3d([0, radius]) | |
ax.grid(b=False) | |
def plot_xzPlane(minx, maxx, miny, minz, maxz): | |
## Plot a plane XZ | |
verts = [[minx, miny, minz], [minx, miny, maxz], | |
[maxx, miny, maxz], [maxx, miny, minz]] | |
xz_plane = Poly3DCollection([verts]) | |
xz_plane.set_facecolor((0.5, 0.5, 0.5, 0.5)) | |
ax.add_collection3d(xz_plane) | |
fig = plt.figure(figsize=(480 / 96., 320 / 96.), | |
dpi=96) if nb_joints == 21 else plt.figure( | |
figsize=(10, 10), dpi=96) | |
# fig.tight_layout() | |
if title is not None: | |
wraped_title = '\n'.join(wrap(title, 40)) | |
fig.suptitle(wraped_title, fontsize=16) | |
ax = p3.Axes3D(fig, auto_add_to_figure=False) | |
fig.add_axes(ax) | |
init() | |
# ax.lines = [] | |
# ax.collections = [] | |
ax.view_init(elev=110, azim=-90) | |
ax.dist = 7.5 | |
# ax = | |
plot_xzPlane(MINS[0] - trajec[index, 0], MAXS[0] - trajec[index, 0], 0, | |
MINS[2] - trajec[index, 1], MAXS[2] - trajec[index, 1]) | |
# ax.scatter(data[index, :22, 0], data[index, :22, 1], data[index, :22, 2], color='black', s=3) | |
if index > 1: | |
ax.plot3D(trajec[:index, 0] - trajec[index, 0], | |
np.zeros_like(trajec[:index, 0]), | |
trajec[:index, 1] - trajec[index, 1], | |
linewidth=1.0, | |
color='blue') | |
# ax = plot_xzPlane(ax, MINS[0], MAXS[0], 0, MINS[2], MAXS[2]) | |
for i, (chain, color) in enumerate(zip(smpl_kinetic_chain, colors)): | |
# print(color) | |
if i < 5: | |
linewidth = 4.0 | |
else: | |
linewidth = 2.0 | |
ax.plot3D(data[index, chain, 0], | |
data[index, chain, 1], | |
data[index, chain, 2], | |
linewidth=linewidth, | |
color=color) | |
# print(trajec[:index, 0].shape) | |
plt.axis('off') | |
ax.set_xticklabels([]) | |
ax.set_yticklabels([]) | |
ax.set_zticklabels([]) | |
if out_name is not None: | |
plt.savefig(out_name, dpi=96) | |
plt.close() | |
else: | |
io_buf = io.BytesIO() | |
fig.savefig(io_buf, format='raw', dpi=96) | |
io_buf.seek(0) | |
# print(fig.bbox.bounds) | |
arr = np.reshape(np.frombuffer(io_buf.getvalue(), dtype=np.uint8), | |
newshape=(int(fig.bbox.bounds[3]), | |
int(fig.bbox.bounds[2]), -1)) | |
io_buf.close() | |
plt.close() | |
return arr | |
out = [] | |
for i in range(frame_number): | |
out.append(update(i)) | |
out = np.stack(out, axis=0) | |
return torch.from_numpy(out) | |
def draw_to_batch(smpl_joints_batch, title_batch=None, outname=None): | |
batch_size = len(smpl_joints_batch) | |
out = [] | |
for i in range(batch_size): | |
out.append( | |
plot_3d_motion([ | |
smpl_joints_batch[i], None, | |
title_batch[i] if title_batch is not None else None | |
])) | |
if outname is not None: | |
imageio.mimsave(outname[i], np.array(out[-1]), duration=50) | |
out = torch.stack(out, axis=0) | |
return out | |