Spaces:
Running
Running
hoshingakag
commited on
Commit
•
ecbd714
1
Parent(s):
e97bd62
more chat
Browse files- app.py +69 -170
- src/llamaindex_palm.py +302 -8
app.py
CHANGED
@@ -1,28 +1,18 @@
|
|
1 |
-
import
|
2 |
-
import time
|
3 |
-
import datetime
|
4 |
|
5 |
import gradio as gr
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
import wandb
|
11 |
-
from wandb.sdk.data_types.trace_tree import Trace
|
12 |
-
|
13 |
import logging
|
14 |
-
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
15 |
-
logger = logging.getLogger('llm')
|
16 |
-
|
17 |
-
# Llama-Index LLM
|
18 |
-
llm = LlamaIndexPaLM()
|
19 |
-
llm.set_index_from_pinecone()
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
|
24 |
-
#
|
25 |
-
|
|
|
|
|
26 |
|
27 |
# Gradio
|
28 |
chat_history = []
|
@@ -32,7 +22,7 @@ def clear_chat() -> None:
|
|
32 |
chat_history = []
|
33 |
return None
|
34 |
|
35 |
-
def get_chat_history(chat_history) -> str:
|
36 |
ind = 0
|
37 |
formatted_chat_history = ""
|
38 |
for message in chat_history:
|
@@ -40,162 +30,71 @@ def get_chat_history(chat_history) -> str:
|
|
40 |
ind += 1
|
41 |
return formatted_chat_history
|
42 |
|
43 |
-
def
|
44 |
global chat_history
|
45 |
-
# get chat history
|
46 |
-
context_chat_history = "\n".join(list(filter(None, chat_history)))
|
47 |
|
48 |
logger.info("Generating Message...")
|
49 |
logger.info(f"User Message:\n{prompt}\n")
|
50 |
-
chat_history.append(prompt)
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
root_span = Trace(
|
56 |
-
name="LLMChain",
|
57 |
-
kind="chain",
|
58 |
-
start_time_ms=start_time_ms,
|
59 |
-
metadata={"user": "Gradio"},
|
60 |
-
)
|
61 |
-
|
62 |
-
# get context
|
63 |
-
context_from_index = llamaindex_llm.generate_response(prompt)
|
64 |
-
logger.info(f"Context from Llama-Index:\n{context_from_index}\n")
|
65 |
-
|
66 |
-
# w&b trace agent
|
67 |
-
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
68 |
-
agent_span = Trace(
|
69 |
-
name="Agent",
|
70 |
-
kind="agent",
|
71 |
-
status_code="success",
|
72 |
-
metadata={
|
73 |
-
"framework": "Llama-Index",
|
74 |
-
"index_type": "VectorStoreIndex",
|
75 |
-
"vector_store": "Pinecone",
|
76 |
-
"vector_store_index": llamaindex_llm._index_name,
|
77 |
-
"vector_store_namespace": llamaindex_llm._index_namespace,
|
78 |
-
"model_name": llamaindex_llm.llm._model_name,
|
79 |
-
# "temperture": 0.7,
|
80 |
-
# "top_k": 40,
|
81 |
-
# "top_p": 0.95,
|
82 |
-
"custom_kwargs": llamaindex_llm.llm._model_kwargs,
|
83 |
-
},
|
84 |
-
start_time_ms=start_time_ms,
|
85 |
-
end_time_ms=agent_end_time_ms,
|
86 |
-
inputs={"query": prompt},
|
87 |
-
outputs={"response": context_from_index},
|
88 |
-
)
|
89 |
-
root_span.add_child(agent_span)
|
90 |
-
|
91 |
-
prompt_with_context = f"""
|
92 |
-
[System]
|
93 |
-
You are in a role play of Gerard Lee and you need to pretend to be him to answer questions from people who interested in Gerard's background.
|
94 |
-
Respond the User Query below in no more than 5 complete sentences, unless specifically asked by the user to elaborate on something. Use only the History and Context to inform your answers.
|
95 |
-
|
96 |
-
[History]
|
97 |
-
{context_chat_history}
|
98 |
-
|
99 |
-
[Context]
|
100 |
-
{context_from_index}
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
"""
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
safety_settings=[
|
110 |
-
{
|
111 |
-
'category': genai.types.HarmCategory.HARM_CATEGORY_UNSPECIFIED,
|
112 |
-
'threshold': genai.types.HarmBlockThreshold.BLOCK_NONE,
|
113 |
-
},
|
114 |
-
],
|
115 |
-
temperature=0.9,
|
116 |
-
)
|
117 |
-
result = response.result
|
118 |
-
success_flag = "success"
|
119 |
-
if result is None:
|
120 |
-
result = "Seems something went wrong. Please try again later."
|
121 |
-
logger.error(f"Result with 'None' received\n")
|
122 |
-
success_flag = "fail"
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
except Exception as e:
|
125 |
-
|
126 |
-
logger.error(f"Exception {e} occured\n")
|
127 |
-
success_flag = "fail"
|
128 |
-
|
129 |
-
chat_history.append(result)
|
130 |
-
logger.info(f"Bot Message:\n{result}\n")
|
131 |
-
|
132 |
-
# w&b trace llm
|
133 |
-
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
134 |
-
llm_span = Trace(
|
135 |
-
name="LLM",
|
136 |
-
kind="llm",
|
137 |
-
status_code=success_flag,
|
138 |
-
start_time_ms=agent_end_time_ms,
|
139 |
-
end_time_ms=llm_end_time_ms,
|
140 |
-
inputs={"input": prompt_with_context},
|
141 |
-
outputs={"result": result},
|
142 |
-
)
|
143 |
-
root_span.add_child(llm_span)
|
144 |
-
|
145 |
-
# w&b finalize trace
|
146 |
-
root_span.add_inputs_and_outputs(
|
147 |
-
inputs={"query": prompt}, outputs={"result": result}
|
148 |
-
)
|
149 |
-
root_span._span.end_time_ms = llm_end_time_ms
|
150 |
-
root_span.log(name="llm_app_trace")
|
151 |
-
|
152 |
-
return result
|
153 |
-
|
154 |
-
with gr.Blocks() as app:
|
155 |
-
chatbot = gr.Chatbot(
|
156 |
-
bubble_full_width=False,
|
157 |
-
container=True,
|
158 |
-
show_share_button=False,
|
159 |
-
avatar_images=[None, './asset/akag-g-only.png']
|
160 |
-
)
|
161 |
-
msg = gr.Textbox(
|
162 |
-
show_label=False,
|
163 |
-
label="Type your message...",
|
164 |
-
placeholder="Hi Gerard, can you introduce yourself?",
|
165 |
-
container=False,
|
166 |
-
)
|
167 |
-
with gr.Row():
|
168 |
-
clear = gr.Button("Clear", scale=1)
|
169 |
-
send = gr.Button(
|
170 |
-
value="",
|
171 |
-
variant="primary",
|
172 |
-
icon="./asset/send-message.png",
|
173 |
-
scale=1
|
174 |
-
)
|
175 |
-
|
176 |
-
def user(user_message, history):
|
177 |
-
return "", history + [[user_message, None]]
|
178 |
-
|
179 |
-
def bot(history):
|
180 |
-
bot_message = generate_chat(history[-1][0], llm)
|
181 |
-
history[-1][1] = ""
|
182 |
-
for character in bot_message:
|
183 |
-
history[-1][1] += character
|
184 |
-
time.sleep(0.01)
|
185 |
-
yield history
|
186 |
-
|
187 |
-
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
188 |
-
bot, chatbot, chatbot
|
189 |
-
)
|
190 |
-
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
191 |
-
bot, chatbot, chatbot
|
192 |
-
)
|
193 |
-
clear.click(clear_chat, None, chatbot, queue=False)
|
194 |
-
|
195 |
-
gr.HTML("""
|
196 |
-
<p><center><i>Disclaimer: This is a RAG app for demostration purpose. LLM hallucination might occur.</i></center></p>
|
197 |
-
<p><center>Hosted on 🤗 Spaces. Powered by Google PaLM 🌴</center></p>
|
198 |
-
""")
|
199 |
-
|
200 |
-
app.queue()
|
201 |
-
app.launch()
|
|
|
1 |
+
from src.llamaindex_palm import LlamaIndexPaLM, LlamaIndexPaLMText
|
|
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from typing import List
|
6 |
+
import time
|
|
|
|
|
|
|
|
|
7 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# import dotenv
|
10 |
+
# dotenv.load_dotenv(".env")
|
11 |
|
12 |
+
# Llama-Index LLM
|
13 |
+
llm_backend = LlamaIndexPaLMText(model_kwargs={'temperature': 0.8})
|
14 |
+
llm = LlamaIndexPaLM(model=llm_backend)
|
15 |
+
llm.get_index_from_pinecone()
|
16 |
|
17 |
# Gradio
|
18 |
chat_history = []
|
|
|
22 |
chat_history = []
|
23 |
return None
|
24 |
|
25 |
+
def get_chat_history(chat_history: List[str]) -> str:
|
26 |
ind = 0
|
27 |
formatted_chat_history = ""
|
28 |
for message in chat_history:
|
|
|
30 |
ind += 1
|
31 |
return formatted_chat_history
|
32 |
|
33 |
+
def generate_text(prompt: str, llamaindex_llm: LlamaIndexPaLM):
|
34 |
global chat_history
|
|
|
|
|
35 |
|
36 |
logger.info("Generating Message...")
|
37 |
logger.info(f"User Message:\n{prompt}\n")
|
|
|
38 |
|
39 |
+
result = llamaindex_llm.generate_text(prompt, chat_history)
|
40 |
+
chat_history.append(prompt)
|
41 |
+
chat_history.append(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
logger.info(f"Replied Message:\n{result}\n")
|
44 |
+
return result
|
|
|
45 |
|
46 |
+
if __name__ == "__main__":
|
47 |
+
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
48 |
+
logger = logging.getLogger('app')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
try:
|
51 |
+
with gr.Blocks() as app:
|
52 |
+
chatbot = gr.Chatbot(
|
53 |
+
bubble_full_width=False,
|
54 |
+
container=True,
|
55 |
+
show_share_button=False,
|
56 |
+
avatar_images=[None, './asset/akag-g-only.png']
|
57 |
+
)
|
58 |
+
msg = gr.Textbox(
|
59 |
+
show_label=False,
|
60 |
+
label="Type your message...",
|
61 |
+
placeholder="Hi Gerard, can you introduce yourself?",
|
62 |
+
container=False,
|
63 |
+
)
|
64 |
+
with gr.Row():
|
65 |
+
clear = gr.Button("Clear", scale=1)
|
66 |
+
send = gr.Button(
|
67 |
+
value="",
|
68 |
+
variant="primary",
|
69 |
+
icon="./asset/send-message.png",
|
70 |
+
scale=1
|
71 |
+
)
|
72 |
+
|
73 |
+
def user(user_message, history):
|
74 |
+
return "", history + [[user_message, None]]
|
75 |
+
|
76 |
+
def bot(history):
|
77 |
+
bot_message = generate_text(history[-1][0], llm)
|
78 |
+
history[-1][1] = ""
|
79 |
+
for character in bot_message:
|
80 |
+
history[-1][1] += character
|
81 |
+
time.sleep(0.01)
|
82 |
+
yield history
|
83 |
+
|
84 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
85 |
+
bot, chatbot, chatbot
|
86 |
+
)
|
87 |
+
send.click(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
88 |
+
bot, chatbot, chatbot
|
89 |
+
)
|
90 |
+
clear.click(clear_chat, None, chatbot, queue=False)
|
91 |
+
|
92 |
+
gr.HTML("""
|
93 |
+
<p><center><i>Disclaimer: This is a RAG app for demostration purpose. LLM hallucination might occur.</i></center></p>
|
94 |
+
<p><center>Hosted on 🤗 Spaces. Powered by Google PaLM 🌴</center></p>
|
95 |
+
""")
|
96 |
+
|
97 |
+
app.queue()
|
98 |
+
app.launch()
|
99 |
except Exception as e:
|
100 |
+
logger.exception(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/llamaindex_palm.py
CHANGED
@@ -1,9 +1,14 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
|
|
3 |
|
4 |
-
from typing import Any, List
|
5 |
from pydantic import Extra
|
6 |
|
|
|
|
|
|
|
7 |
import pinecone
|
8 |
import google.generativeai as genai
|
9 |
|
@@ -25,6 +30,25 @@ from llama_index.llms import (
|
|
25 |
)
|
26 |
from llama_index.llms.base import llm_completion_callback
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
class LlamaIndexPaLMEmbeddings(BaseEmbedding, extra=Extra.allow):
|
29 |
def __init__(
|
30 |
self,
|
@@ -114,11 +138,13 @@ class LlamaIndexPaLM():
|
|
114 |
def __init__(
|
115 |
self,
|
116 |
emb_model: LlamaIndexPaLMEmbeddings = LlamaIndexPaLMEmbeddings(),
|
117 |
-
model: LlamaIndexPaLMText = LlamaIndexPaLMText()
|
|
|
118 |
) -> None:
|
119 |
self.emb_model = emb_model
|
120 |
self.llm = model
|
121 |
-
|
|
|
122 |
# Google Generative AI
|
123 |
genai.configure(api_key=os.environ['PALM_API_KEY'])
|
124 |
|
@@ -128,6 +154,9 @@ class LlamaIndexPaLM():
|
|
128 |
environment=os.getenv('PINECONE_ENV')
|
129 |
)
|
130 |
|
|
|
|
|
|
|
131 |
# model metadata
|
132 |
CONTEXT_WINDOW = os.getenv('CONTEXT_WINDOW', 8196)
|
133 |
NUM_OUTPUT = os.getenv('NUM_OUTPUT', 1024)
|
@@ -156,7 +185,13 @@ class LlamaIndexPaLM():
|
|
156 |
prompt_helper=self.prompt_helper,
|
157 |
)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
self,
|
161 |
index_name: str = os.getenv('PINECONE_INDEX'),
|
162 |
index_namespace: str = os.getenv('PINECONE_NAMESPACE')
|
@@ -168,10 +203,269 @@ class LlamaIndexPaLM():
|
|
168 |
self._index_name = index_name
|
169 |
self._index_namespace = index_namespace
|
170 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
-
def
|
173 |
self,
|
174 |
query: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
) -> str:
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import datetime
|
3 |
+
import asyncio
|
4 |
+
from concurrent.futures import ThreadPoolExecutor
|
5 |
|
6 |
+
from typing import Any, List, Dict, Union
|
7 |
from pydantic import Extra
|
8 |
|
9 |
+
import wandb
|
10 |
+
from wandb.sdk.data_types.trace_tree import Trace
|
11 |
+
|
12 |
import pinecone
|
13 |
import google.generativeai as genai
|
14 |
|
|
|
30 |
)
|
31 |
from llama_index.llms.base import llm_completion_callback
|
32 |
|
33 |
+
from llama_index.evaluation import SemanticSimilarityEvaluator
|
34 |
+
from llama_index.embeddings import SimilarityMode
|
35 |
+
|
36 |
+
import logging
|
37 |
+
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y-%m-%d %I:%M:%S %p', level=logging.INFO)
|
38 |
+
logger = logging.getLogger('llm')
|
39 |
+
|
40 |
+
prompt_template = """
|
41 |
+
[System]
|
42 |
+
You are in a role play of Gerard Lee.
|
43 |
+
Reply in no more than 7 complete sentences using content from [Context] only. Refer to [History] for seamless conversatation.
|
44 |
+
|
45 |
+
[History]
|
46 |
+
{context_history}
|
47 |
+
|
48 |
+
[Context]
|
49 |
+
{context_from_index}
|
50 |
+
"""
|
51 |
+
|
52 |
class LlamaIndexPaLMEmbeddings(BaseEmbedding, extra=Extra.allow):
|
53 |
def __init__(
|
54 |
self,
|
|
|
138 |
def __init__(
|
139 |
self,
|
140 |
emb_model: LlamaIndexPaLMEmbeddings = LlamaIndexPaLMEmbeddings(),
|
141 |
+
model: LlamaIndexPaLMText = LlamaIndexPaLMText(),
|
142 |
+
# prompt_template: str = prompt_template
|
143 |
) -> None:
|
144 |
self.emb_model = emb_model
|
145 |
self.llm = model
|
146 |
+
self.prompt_template = prompt_template
|
147 |
+
|
148 |
# Google Generative AI
|
149 |
genai.configure(api_key=os.environ['PALM_API_KEY'])
|
150 |
|
|
|
154 |
environment=os.getenv('PINECONE_ENV')
|
155 |
)
|
156 |
|
157 |
+
# W&B
|
158 |
+
wandb.init(project=os.getenv('WANDB_PROJECT'))
|
159 |
+
|
160 |
# model metadata
|
161 |
CONTEXT_WINDOW = os.getenv('CONTEXT_WINDOW', 8196)
|
162 |
NUM_OUTPUT = os.getenv('NUM_OUTPUT', 1024)
|
|
|
185 |
prompt_helper=self.prompt_helper,
|
186 |
)
|
187 |
|
188 |
+
self.emd_evaluator = SemanticSimilarityEvaluator(
|
189 |
+
service_context=self.service_context,
|
190 |
+
similarity_mode=SimilarityMode.DEFAULT,
|
191 |
+
similarity_threshold=os.getenv('SIMILARITY_THRESHOLD', 0.7),
|
192 |
+
)
|
193 |
+
|
194 |
+
def get_index_from_pinecone(
|
195 |
self,
|
196 |
index_name: str = os.getenv('PINECONE_INDEX'),
|
197 |
index_namespace: str = os.getenv('PINECONE_NAMESPACE')
|
|
|
203 |
self._index_name = index_name
|
204 |
self._index_namespace = index_namespace
|
205 |
return None
|
206 |
+
|
207 |
+
def retrieve_context(
|
208 |
+
self,
|
209 |
+
query: str
|
210 |
+
) -> Dict[str, Union[str, int]]:
|
211 |
+
start_time = round(datetime.datetime.now().timestamp() * 1000)
|
212 |
+
response = self.pinecone_index.as_query_engine(similarity_top_k=3).query(query)
|
213 |
+
end_time = round(datetime.datetime.now().timestamp() * 1000)
|
214 |
+
return {"result": response.response, "start": start_time, "end": end_time}
|
215 |
|
216 |
+
async def aretrieve_context(
|
217 |
self,
|
218 |
query: str
|
219 |
+
) -> Dict[str, Union[str, int]]:
|
220 |
+
start_time = round(datetime.datetime.now().timestamp() * 1000)
|
221 |
+
response = await self.pinecone_index.as_query_engine(similarity_top_k=3, use_async=True).aquery(query)
|
222 |
+
end_time = round(datetime.datetime.now().timestamp() * 1000)
|
223 |
+
return {"result": response.response, "start": start_time, "end": end_time}
|
224 |
+
|
225 |
+
async def aretrieve_context_multi(
|
226 |
+
self,
|
227 |
+
query_list: List[str]
|
228 |
+
) -> List[Dict]:
|
229 |
+
result = await asyncio.gather(*(self.aretrieve_context(query) for query in query_list))
|
230 |
+
return result
|
231 |
+
|
232 |
+
async def aevaluate_context(
|
233 |
+
self,
|
234 |
+
query: str,
|
235 |
+
returned_context: str
|
236 |
+
) -> Dict[str, Any]:
|
237 |
+
result = await self.emd_evaluator.aevaluate(
|
238 |
+
response=returned_context,
|
239 |
+
reference=query,
|
240 |
+
)
|
241 |
+
return result
|
242 |
+
|
243 |
+
async def aevaluate_context_multi(
|
244 |
+
self,
|
245 |
+
query_list: List[str],
|
246 |
+
returned_context_list: List[str]
|
247 |
+
) -> List[Dict]:
|
248 |
+
result = await asyncio.gather(*(self.aevaluate_context(query, returned_context) for query, returned_context in zip(query_list, returned_context_list)))
|
249 |
+
return result
|
250 |
+
|
251 |
+
def format_history_as_context(
|
252 |
+
self,
|
253 |
+
history: List[str],
|
254 |
+
) -> str:
|
255 |
+
format_chat_history = "\n".join(list(filter(None, history)))
|
256 |
+
return format_chat_history
|
257 |
+
|
258 |
+
def generate_text(
|
259 |
+
self,
|
260 |
+
query: str,
|
261 |
+
history: List[str],
|
262 |
) -> str:
|
263 |
+
# get history
|
264 |
+
context_history = self.format_history_as_context(history=history)
|
265 |
+
|
266 |
+
# w&b trace start
|
267 |
+
start_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
268 |
+
root_span = Trace(
|
269 |
+
name="MetaAgent",
|
270 |
+
kind="agent",
|
271 |
+
start_time_ms=start_time_ms,
|
272 |
+
metadata={"user": "🤗 Space"},
|
273 |
+
)
|
274 |
+
|
275 |
+
# get retrieval context(s) from llama-index vectorstore index
|
276 |
+
# w&b trace retrieval & select agent
|
277 |
+
agent_span = Trace(
|
278 |
+
name="LlamaIndexAgent",
|
279 |
+
kind="agent",
|
280 |
+
start_time_ms=start_time_ms,
|
281 |
+
)
|
282 |
+
try:
|
283 |
+
# No history, single context retrieval without evaluation
|
284 |
+
if not history:
|
285 |
+
# w&b trace retrieval context
|
286 |
+
result_query_only = self.retrieve_context(query)
|
287 |
+
# async version
|
288 |
+
# result_query_only = asyncio.run(self.retrieve_context(query))
|
289 |
+
context_from_index_selected = result_query_only["result"]
|
290 |
+
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
291 |
+
retrieval_span = Trace(
|
292 |
+
name="QueryRetrieval",
|
293 |
+
kind="chain",
|
294 |
+
status_code="success",
|
295 |
+
metadata={
|
296 |
+
"framework": "Llama-Index",
|
297 |
+
"index_type": "VectorStoreIndex",
|
298 |
+
"vector_store": "Pinecone",
|
299 |
+
"vector_store_index": self._index_name,
|
300 |
+
"vector_store_namespace": self._index_namespace,
|
301 |
+
"model_name": self.llm._model_name,
|
302 |
+
"custom_kwargs": self.llm._model_kwargs,
|
303 |
+
},
|
304 |
+
start_time_ms=start_time_ms,
|
305 |
+
end_time_ms=agent_end_time_ms,
|
306 |
+
inputs={"query": query},
|
307 |
+
outputs={"response": context_from_index_selected},
|
308 |
+
)
|
309 |
+
agent_span.add_child(retrieval_span)
|
310 |
+
# Has history, multiple context retrieval with async, then evaluation to determine which context to choose
|
311 |
+
else:
|
312 |
+
extended_query = f"[History]\n{history[-1]}\n[New Query]\n{query}"
|
313 |
+
|
314 |
+
# thread version
|
315 |
+
with ThreadPoolExecutor(2) as executor:
|
316 |
+
results = executor.map(self.retrieve_context, [query, extended_query])
|
317 |
+
result_query_only, result_extended_query = [rec for rec in results]
|
318 |
+
|
319 |
+
# async version - not working
|
320 |
+
# result_query_only, result_extended_query = asyncio.run(
|
321 |
+
# self.aretrieve_context_multi([query, extended_query])
|
322 |
+
# )
|
323 |
+
|
324 |
+
# w&b trace retrieval context query only
|
325 |
+
retrieval_query_span = Trace(
|
326 |
+
name="QueryRetrieval",
|
327 |
+
kind="chain",
|
328 |
+
status_code="success",
|
329 |
+
metadata={
|
330 |
+
"framework": "Llama-Index",
|
331 |
+
"index_type": "VectorStoreIndex",
|
332 |
+
"vector_store": "Pinecone",
|
333 |
+
"vector_store_index": self._index_name,
|
334 |
+
"vector_store_namespace": self._index_namespace,
|
335 |
+
"model_name": self.llm._model_name,
|
336 |
+
"custom_kwargs": self.llm._model_kwargs,
|
337 |
+
"start_time": result_query_only["start"],
|
338 |
+
"end_time": result_query_only["end"],
|
339 |
+
},
|
340 |
+
start_time_ms=result_query_only["start"],
|
341 |
+
end_time_ms=result_query_only["end"],
|
342 |
+
inputs={"query": query},
|
343 |
+
outputs={"response": result_query_only["result"]},
|
344 |
+
)
|
345 |
+
agent_span.add_child(retrieval_query_span)
|
346 |
+
|
347 |
+
# w&b trace retrieval context extended query
|
348 |
+
retrieval_extended_query_span = Trace(
|
349 |
+
name="ExtendedQueryRetrieval",
|
350 |
+
kind="chain",
|
351 |
+
status_code="success",
|
352 |
+
metadata={
|
353 |
+
"framework": "Llama-Index",
|
354 |
+
"index_type": "VectorStoreIndex",
|
355 |
+
"vector_store": "Pinecone",
|
356 |
+
"vector_store_index": self._index_name,
|
357 |
+
"vector_store_namespace": self._index_namespace,
|
358 |
+
"model_name": self.llm._model_name,
|
359 |
+
"custom_kwargs": self.llm._model_kwargs,
|
360 |
+
"start_time": result_extended_query["start"],
|
361 |
+
"end_time": result_extended_query["end"],
|
362 |
+
},
|
363 |
+
start_time_ms=result_extended_query["start"],
|
364 |
+
end_time_ms=result_extended_query["end"],
|
365 |
+
inputs={"query": extended_query},
|
366 |
+
outputs={"response": result_extended_query["result"]},
|
367 |
+
)
|
368 |
+
agent_span.add_child(retrieval_extended_query_span)
|
369 |
+
|
370 |
+
# w&b trace select context
|
371 |
+
eval_start_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
372 |
+
eval_context_query_only, eval_context_extended_query = asyncio.run(
|
373 |
+
self.aevaluate_context_multi([query, extended_query], [result_query_only["result"], result_extended_query["result"]])
|
374 |
+
)
|
375 |
+
|
376 |
+
if eval_context_query_only.score > eval_context_extended_query.score:
|
377 |
+
query_selected, context_from_index_selected = query, result_query_only["result"]
|
378 |
+
else:
|
379 |
+
query_selected, context_from_index_selected = extended_query, result_extended_query["result"]
|
380 |
+
|
381 |
+
agent_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
382 |
+
eval_span = Trace(
|
383 |
+
name="EmbeddingsEvaluator",
|
384 |
+
kind="tool",
|
385 |
+
status_code="success",
|
386 |
+
metadata={
|
387 |
+
"framework": "Llama-Index",
|
388 |
+
"evaluator": "SemanticSimilarityEvaluator",
|
389 |
+
"similarity_mode": "DEFAULT",
|
390 |
+
"similarity_threshold": 0.7,
|
391 |
+
"similarity_results": {
|
392 |
+
"eval_context_query_only": eval_context_query_only,
|
393 |
+
"eval_context_extended_query": eval_context_extended_query,
|
394 |
+
},
|
395 |
+
"model_name": self.emb_model._model_name,
|
396 |
+
},
|
397 |
+
start_time_ms=eval_start_time_ms,
|
398 |
+
end_time_ms=agent_end_time_ms,
|
399 |
+
inputs={"query": query_selected},
|
400 |
+
outputs={"response": context_from_index_selected},
|
401 |
+
)
|
402 |
+
agent_span.add_child(eval_span)
|
403 |
+
|
404 |
+
except Exception as e:
|
405 |
+
logger.error(f"Exception {e} occured when retriving context\n")
|
406 |
+
|
407 |
+
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
408 |
+
result = "Something went wrong. Please try again later."
|
409 |
+
root_span.add_inputs_and_outputs(
|
410 |
+
inputs={"query": query}, outputs={"result": result, "exception": e}
|
411 |
+
)
|
412 |
+
root_span._span.status_code="fail"
|
413 |
+
root_span._span.end_time_ms = llm_end_time_ms
|
414 |
+
root_span.log(name="llm_app_trace")
|
415 |
+
return result
|
416 |
+
|
417 |
+
logger.info(f"Context from Llama-Index:\n{context_from_index_selected}\n")
|
418 |
+
|
419 |
+
agent_span.add_inputs_and_outputs(
|
420 |
+
inputs={"query": query}, outputs={"result": context_from_index_selected}
|
421 |
+
)
|
422 |
+
agent_span._span.status_code="success"
|
423 |
+
agent_span._span.end_time_ms = agent_end_time_ms
|
424 |
+
root_span.add_child(agent_span)
|
425 |
+
|
426 |
+
# generate text with prompt template to roleplay myself
|
427 |
+
prompt_with_context = self.prompt_template.format(context_history=context_history, context_from_index=context_from_index_selected, user_query=query)
|
428 |
+
try:
|
429 |
+
response = genai.generate_text(
|
430 |
+
prompt=prompt_with_context,
|
431 |
+
safety_settings=[
|
432 |
+
{
|
433 |
+
'category': genai.types.HarmCategory.HARM_CATEGORY_UNSPECIFIED,
|
434 |
+
'threshold': genai.types.HarmBlockThreshold.BLOCK_NONE,
|
435 |
+
},
|
436 |
+
],
|
437 |
+
temperature=0.9,
|
438 |
+
)
|
439 |
+
result = response.result
|
440 |
+
success_flag = "success"
|
441 |
+
if result is None:
|
442 |
+
result = "Seems something went wrong. Please try again later."
|
443 |
+
logger.error(f"Result with 'None' received\n")
|
444 |
+
success_flag = "fail"
|
445 |
+
|
446 |
+
except Exception as e:
|
447 |
+
result = "Seems something went wrong. Please try again later."
|
448 |
+
logger.error(f"Exception {e} occured\n")
|
449 |
+
success_flag = "fail"
|
450 |
+
|
451 |
+
# w&b trace llm
|
452 |
+
llm_end_time_ms = round(datetime.datetime.now().timestamp() * 1000)
|
453 |
+
llm_span = Trace(
|
454 |
+
name="LLM",
|
455 |
+
kind="llm",
|
456 |
+
status_code=success_flag,
|
457 |
+
start_time_ms=agent_end_time_ms,
|
458 |
+
end_time_ms=llm_end_time_ms,
|
459 |
+
inputs={"input": prompt_with_context},
|
460 |
+
outputs={"result": result},
|
461 |
+
)
|
462 |
+
root_span.add_child(llm_span)
|
463 |
+
|
464 |
+
# w&b finalize trace
|
465 |
+
root_span.add_inputs_and_outputs(
|
466 |
+
inputs={"query": query}, outputs={"result": result}
|
467 |
+
)
|
468 |
+
root_span._span.end_time_ms = llm_end_time_ms
|
469 |
+
root_span.log(name="llm_app_trace")
|
470 |
+
|
471 |
+
return result
|