Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, base64
|
2 |
+
import requests, json
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
GREEN = '\033[1;32m'
|
7 |
+
BLUE = '\033[1;34m'
|
8 |
+
RESET = '\033[0m'
|
9 |
+
URL = "https://ai1071.4dstaging.com/v1/"
|
10 |
+
|
11 |
+
VALID_ANSWER, QUERY_FAIL, INVALID_ANSWER=0 , 1, 2
|
12 |
+
|
13 |
+
VICTORIA_HARBOUR, MIC =0, 1 # VICTORIA_HARBOUR=海港飲食集團
|
14 |
+
CUSTOMER = MIC
|
15 |
+
|
16 |
+
MODES = [
|
17 |
+
{
|
18 |
+
"name": " ",
|
19 |
+
"query_mode_indx": 5,
|
20 |
+
"retrieval_temperature": 0.2, #EC19Jun2024
|
21 |
+
"path": r"E:\workspace\RAG_data\20240412_superQuery\db\EC_test_all\20240603_haigang_qa",
|
22 |
+
"sample_questions": [
|
23 |
+
"這裡可以book位嗎?", "可以book位嗎?", "Hi", "蟹", "魚", "會員", "訂枱"
|
24 |
+
"锡我?", "可唔可以幫我寫一張菜單?",
|
25 |
+
"可以加大長腳蟹嗎?","想查詢最新堂食優惠",
|
26 |
+
"有什麼優惠", "宴會菜單", "有長腳蟹?", "積分如何運作?", "點加入會員?",
|
27 |
+
"套餐可轉其他菜式嗎?", "網購限定優惠可以堂食嗎?", "當日海鮮供應情況?"
|
28 |
+
],
|
29 |
+
|
30 |
+
},{
|
31 |
+
"name": "MiC Modular Integrated Construction - HK (Beta)",
|
32 |
+
"query_mode_indx": 4,
|
33 |
+
"retrieval_temperature": 0.2, #EC19Jun2024
|
34 |
+
# "path": r"E:\workspace\RAG_data\20??????????????S",
|
35 |
+
"path": r"E:\workspace\RAG_data\20240412_superQuery\db\EC_test_all\20240619_mic_demo",
|
36 |
+
"sample_questions": [
|
37 |
+
"What is MIC?", "優惠措施", "Please introduce CIC", "Key Technologies of MIC",
|
38 |
+
"組裝合成建築法", "物料或產品規格", "MIC safety."
|
39 |
+
],
|
40 |
+
}
|
41 |
+
]
|
42 |
+
|
43 |
+
|
44 |
+
questions=MODES[CUSTOMER]['sample_questions']
|
45 |
+
|
46 |
+
def the_answer(response:dict): #extract answer from the response.
|
47 |
+
a=response['msg'].split('Answer(GPT4):')[1].split('References:')[0] #get answers
|
48 |
+
a.strip() # remove all linefeeds
|
49 |
+
return a
|
50 |
+
|
51 |
+
def the_references(response:dict, user_query: str):
|
52 |
+
ref_contents=[]
|
53 |
+
if response["code"]==VALID_ANSWER: #
|
54 |
+
for ref in response["data"]["source_docs"]:
|
55 |
+
content=ref["page_content"]
|
56 |
+
# ref_question=content['問題']
|
57 |
+
# ref_question_answer=content['回答']
|
58 |
+
ref_contents.append(content)
|
59 |
+
ref_contents_filtered = filter_repeated(user_query, ref_contents) #EC04Jun2024
|
60 |
+
return ref_contents_filtered #ref_contents
|
61 |
+
|
62 |
+
def filter_repeated(user_query, ref_contents: list):
|
63 |
+
# This function help to filter out the reference question that is 100% same as the user's ASKED question.
|
64 |
+
#EC04Jun2024
|
65 |
+
ref_contents_filtered = []
|
66 |
+
for ref in ref_contents:
|
67 |
+
# ref_dict = json.loads(ref)
|
68 |
+
try:
|
69 |
+
question = next(iter(ref.get('問題').values()))
|
70 |
+
except StopIteration as e:
|
71 |
+
print(e)
|
72 |
+
pass
|
73 |
+
except Exception as e:
|
74 |
+
print(e)
|
75 |
+
ref_contents_filtered.append(ref)
|
76 |
+
continue
|
77 |
+
print(question)
|
78 |
+
print("question == user_query: "+str(question == user_query))
|
79 |
+
if not question == user_query:
|
80 |
+
ref_contents_filtered.append(ref)
|
81 |
+
return ref_contents_filtered
|
82 |
+
|
83 |
+
def get_images_from_source(source_docs):
|
84 |
+
image_exts = [".jpg", ".jpeg", ".png"]
|
85 |
+
source_list = [doc['source'] for doc in source_docs]
|
86 |
+
source_img_list = [source for source in source_list if os.path.splitext(source)[1] in image_exts]
|
87 |
+
|
88 |
+
buffer_img_str = ""
|
89 |
+
for source in source_img_list:
|
90 |
+
response = requests.get(URL+f"images?image_id={source}")
|
91 |
+
if response.status_code == 200:
|
92 |
+
image_data = response.content
|
93 |
+
base64_image = base64.b64encode(image_data).decode("utf-8") #image_data.encode("base64").decode("utf-8")
|
94 |
+
|
95 |
+
# Create an HTML <img> tag
|
96 |
+
# img_name = os.path.basename(source)
|
97 |
+
img_html = f'<img src="data:image/png;base64,{base64_image}" alt="img_name">'
|
98 |
+
buffer_img_str += "\n"+img_html
|
99 |
+
|
100 |
+
# Print or use img_html as needed
|
101 |
+
# print(img_html)
|
102 |
+
else:
|
103 |
+
print("Error fetching image")
|
104 |
+
return buffer_img_str
|
105 |
+
|
106 |
+
def all_info(response):
|
107 |
+
info="\n".join([f"{GREEN}{key}{RESET}: {value}" for key, value in response.items()])
|
108 |
+
return info
|
109 |
+
|
110 |
+
def request_stream_chat(question:str, history):
|
111 |
+
global temp_source_docs
|
112 |
+
|
113 |
+
if not question:
|
114 |
+
yield "Hello! What would you like to know?"
|
115 |
+
return
|
116 |
+
|
117 |
+
payload = {
|
118 |
+
"prompt": question,
|
119 |
+
"retrieval_temperature": 0.2, #MODES[CUSTOMER]['retrieval_temperature'], #EC19Jun2024: from 0.2 -> MODES[CUSTOMER]['retrieval_temperature']
|
120 |
+
|
121 |
+
# "query_mode_indx": 5,
|
122 |
+
# "path": r"E:\workspace\RAG_data\20240412_superQuery\db\EC_test_all\20240603_haigang_qa",
|
123 |
+
|
124 |
+
"query_mode_indx": MODES[CUSTOMER]['query_mode_indx'],
|
125 |
+
"path": MODES[CUSTOMER]['path'],
|
126 |
+
|
127 |
+
"stream": True,
|
128 |
+
"LLM_type": "gpt"
|
129 |
+
}
|
130 |
+
reply_buffer = ""
|
131 |
+
with requests.post(url=URL+"query", json=payload, stream=True) as r_stream:
|
132 |
+
for line in r_stream.iter_lines():
|
133 |
+
if line:
|
134 |
+
line = json.loads(line)
|
135 |
+
if line['finished']: #all the steamed content
|
136 |
+
response = line
|
137 |
+
# print(f"{RESET}-end")
|
138 |
+
# response=filter_repeated(response)
|
139 |
+
|
140 |
+
msg = response['msg']
|
141 |
+
|
142 |
+
if payload['query_mode_indx'] == 5:
|
143 |
+
source_docs_content = the_references(response, question)
|
144 |
+
source_docs_content_str = "\n".join([str(content) for content in source_docs_content])
|
145 |
+
response_str = msg+"\n\nSource documents:\n"+source_docs_content_str
|
146 |
+
else:
|
147 |
+
response_str = msg+"\n\n"+response.get('reference') #EC19Jun2024: from [] -> .get()
|
148 |
+
|
149 |
+
source_docs = response['data']['source_docs']
|
150 |
+
image_str = get_images_from_source(source_docs)
|
151 |
+
response_str += "\n"+image_str
|
152 |
+
yield response_str
|
153 |
+
|
154 |
+
break
|
155 |
+
else:
|
156 |
+
# yield line
|
157 |
+
# print(f"{BLUE}"+line['reply']+f"{RESET}", end="") #steaming chuncks.
|
158 |
+
reply_buffer += line['reply']
|
159 |
+
yield reply_buffer #line['reply']
|
160 |
+
|
161 |
+
# response=the_answer(response)+'\n' + str(the_references(response))
|
162 |
+
# return response
|
163 |
+
|
164 |
+
def my_generator(x):
|
165 |
+
for i in range(x):
|
166 |
+
yield i
|
167 |
+
|
168 |
+
if __name__ == "__main__":
|
169 |
+
# responses=[]; answers=[]; references=[]; all_infos=[]
|
170 |
+
# for q in questions:
|
171 |
+
# response=request_stream_chat(q, "dummy history")
|
172 |
+
|
173 |
+
# responses.append(response)
|
174 |
+
# all_infos.append(all_info(response))
|
175 |
+
# answers.append(the_answer(response))
|
176 |
+
# references.append(the_references(response))
|
177 |
+
|
178 |
+
gr.ChatInterface(
|
179 |
+
request_stream_chat, #a4o_response
|
180 |
+
examples=questions,
|
181 |
+
|
182 |
+
chatbot=gr.Chatbot(height=450), #300),
|
183 |
+
textbox=gr.Textbox(placeholder="喺呢度問我問題.", container=False, scale=7),
|
184 |
+
title=MODES[CUSTOMER]['name'],
|
185 |
+
description="智能査詢",
|
186 |
+
theme="soft",
|
187 |
+
cache_examples=False, #True,
|
188 |
+
retry_btn=None,
|
189 |
+
undo_btn="Delete Previous",
|
190 |
+
clear_btn="Clear",
|
191 |
+
fill_height=True,
|
192 |
+
).launch(share=True) #False) #True)
|