File size: 9,955 Bytes
2569947
 
 
 
 
 
8e1c5c0
687a044
8e1c5c0
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49fdf67
2569947
 
 
 
 
 
 
 
 
bcdb0f9
2569947
 
 
 
 
 
 
 
 
 
 
bcdb0f9
2569947
 
 
 
 
bcdb0f9
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8278a9f
2569947
 
 
 
 
 
 
8278a9f
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8278a9f
 
 
 
 
 
 
 
2569947
 
 
 
8278a9f
2569947
 
 
 
 
8278a9f
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd6b37c
d2c8132
 
 
 
2569947
 
 
 
d2c8132
2569947
 
 
 
 
 
d2c8132
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b97930
2569947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8278a9f
2569947
 
 
 
 
 
8278a9f
2569947
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
"""
streamlit run app.py --server.address 0.0.0.0
"""

from __future__ import annotations

import streamlit as st
import os

import faiss
from sentence_transformers import SentenceTransformer
import torch
from openai import OpenAI
import streamlit as st
import pandas as pd
import os
from time import time
from datasets.download import DownloadManager
from datasets import load_dataset  # type: ignore


WIKIPEDIA_JA_DS = "singletongue/wikipedia-utils"
WIKIPEDIA_JS_DS_NAME = "passages-c400-jawiki-20230403"
WIKIPEDIA_JA_EMB_DS = "hotchpotch/wikipedia-passages-jawiki-embeddings"

EMB_MODEL_PQ = {
    "intfloat/multilingual-e5-small": 96,
    "intfloat/multilingual-e5-base": 192,
    "intfloat/multilingual-e5-large": 256,
    "cl-nagoya/sup-simcse-ja-base": 192,
    "pkshatech/GLuCoSE-base-ja": 192,
}

EMB_MODEL_NAMES = list(EMB_MODEL_PQ.keys())

OPENAI_MODEL_NAMES = [
    "gpt-3.5-turbo-1106",
    "gpt-4-1106-preview",
]

E5_QUERY_TYPES = [
    "passage",
    "query",
]

DEFAULT_QA_PROMPT = """
## Instruction

Prepare an explanatory statement for the question, including as much detailed explanation as possible.
Avoid speculations or information not contained in the contexts. Heavily favor knowledge provided in the documents before falling back to baseline knowledge or other contexts. If searching the contexts didn"t yield any answer, just say that.

Responses must be given in Japanese.

## Contexts

{contexts}

## Question

{question}
""".strip()


if os.getenv("SPACE_ID"):
    USE_HF_SPACE = True
    os.environ["HF_HOME"] = "/data/.huggingface"
    os.environ["HF_DATASETS_CACHE"] = "/data/.huggingface"
else:
    USE_HF_SPACE = False

# for tokenizer
os.environ["TOKENIZERS_PARALLELISM"] = "false"

OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")


@st.cache_resource
def get_model(name: str, max_seq_length=512):
    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
    elif torch.backends.mps.is_available():
        device = "mps"
    model = SentenceTransformer(name, device=device)
    model.max_seq_length = max_seq_length
    return model


@st.cache_resource
def get_wikija_ds(name: str = WIKIPEDIA_JS_DS_NAME):
    ds = load_dataset(path=WIKIPEDIA_JA_DS, name=name, split="train")
    return ds


@st.cache_resource
def get_faiss_index(
    index_name: str, ja_emb_ds: str = WIKIPEDIA_JA_EMB_DS, name=WIKIPEDIA_JS_DS_NAME
):
    target_path = f"faiss_indexes/{name}/{index_name}"
    dm = DownloadManager()
    index_local_path = dm.download(
        f"https://huggingface.co/datasets/{ja_emb_ds}/resolve/main/{target_path}"
    )
    index = faiss.read_index(index_local_path)
    index.nprobe = 128
    return index


def text_to_emb(model, text: str, prefix: str):
    return model.encode([prefix + text], normalize_embeddings=True)


def search(
    faiss_index, emb_model, ds, question: str, search_text_prefix: str, top_k: int
):
    start_time = time()
    emb = text_to_emb(emb_model, question, search_text_prefix)
    emb_exec_time = time() - start_time
    scores, indexes = faiss_index.search(emb, top_k)
    faiss_seartch_time = time() - emb_exec_time - start_time
    scores = scores[0]
    indexes = indexes[0]
    results = []
    for idx, score in zip(indexes, scores):  # type: ignore
        idx = int(idx)
        passage = ds[idx]
        results.append((score, passage))
    return results, emb_exec_time, faiss_seartch_time


def to_contexts(passages):
    contexts = ""
    for passage in passages:
        title = passage["title"]
        text = passage["text"]
        # section = passage["section"]
        contexts += f"- {title}: {text}\n"
    return contexts


def qa(
    openai_api_key: str,
    question: str,
    passages: list,
    model_name: str,
    temperature: int,
    qa_prompt: str,
    max_tokens=2000,
):
    client = OpenAI(api_key=openai_api_key)
    contexts = to_contexts(passages)
    prompt = qa_prompt.format(contexts=contexts, question=question)
    response = client.chat.completions.create(
        model=model_name,
        messages=[
            {"role": "user", "content": prompt},
        ],
        stream=True,
        temperature=temperature,
        max_tokens=max_tokens,
        seed=42,
    )
    for chunk in response:
        delta = chunk.choices[0].delta
        yield delta.content or ""


def generate_answer(
    openai_api_key,
    buf,
    question,
    passages,
    model_name,
    temperature,
    qa_prompt,
    max_tokens,
):
    buf.write("⏳回答の生成中...")
    texts = ""
    for char in qa(
        openai_api_key=openai_api_key,
        question=question,
        passages=passages,
        model_name=model_name,
        temperature=temperature,
        qa_prompt=qa_prompt,
        max_tokens=max_tokens,
    ):
        texts += char
        buf.write(texts)


def to_df(scores, passages):
    df = pd.DataFrame(passages)
    df["text"] = df["text"]
    df["score"] = scores
    df_rows = ["score", "title", "text", "section"]
    df = df[df_rows]
    return df


def app():
    st.title("Wikipedia 日本語 - RAGを使った検索Q&A")
    md_text = """
    [RAG用途に使える、Wikipedia 日本語の embeddings とベクトル検索用の faiss index を作った](https://secon.dev/entry/2023/12/04/080000-wikipedia-ja-embeddings/) の検索 & 質疑応答Q&Aのデモです。Wikipedia 2023年4月3日時点のデータを使用しています。
    """
    st.markdown(md_text)

    st.text_area(
        "Question",
        key="question",
        value="楽曲『約束はいらない』でデビューした、声優は誰?",
    )
    if not OPENAI_API_KEY:
        st.text_input(
            "OpenAI API Key",
            key="openai_api_key",
            type="password",
            placeholder="※ OpenAI API Key 未入力時は回答を生成せずに、検索のみ実行します",
        )
    else:
        st.session_state.openai_api_key = OPENAI_API_KEY

    with st.expander("オプション"):
        option_cols_main = st.columns(2)
        with option_cols_main[0]:
            st.selectbox("Emb Model", EMB_MODEL_NAMES, index=0, key="emb_model_name")
        with option_cols_main[1]:
            st.selectbox(
                "OpenAI Model", OPENAI_MODEL_NAMES, index=0, key="openai_model_name"
            )
        emb_model_name = st.session_state.emb_model_name
        option_cols_sub = st.columns(2)
        with option_cols_sub[0]:
            st.number_input("Top K", value=5, key="top_k", min_value=1, max_value=20)
        with option_cols_sub[1]:
            if "-e5-" in emb_model_name:
                st.radio(
                    "Passage or Query (e5 only)",
                    E5_QUERY_TYPES,
                    index=0,
                    key="e5_query_or_passage",
                    horizontal=True,
                )
                e5_query_or_passage = st.session_state.e5_query_or_passage
                index_emb_model_name = (
                    f"{emb_model_name.split('/')[-1]}-{e5_query_or_passage}"
                )
                search_text_prefix = f"{e5_query_or_passage}: "
            else:
                index_emb_model_name = emb_model_name.split("/")[-1]
                search_text_prefix = ""
        option_cols = st.columns(3)
        with option_cols[0]:
            st.slider("Temperature", 0.0, 1.0, value=0.8, key="temperature")
        with option_cols[1]:
            st.slider("nprobe", 16, 1024, value=128, key="nprobe")
        with option_cols[2]:
            st.number_input(
                "max_tokens", value=2000, key="max_tokens", min_value=1, max_value=16000
            )
        st.text_area("QA Prompt", value=DEFAULT_QA_PROMPT, key="qa_prompt")

    loading_placeholder = st.empty()
    loading_placeholder.text("⏳ Loading - Embedding Model...")
    emb_model = get_model(st.session_state.emb_model_name)
    loading_placeholder.text("⏳ Loading - Faiss Index...")
    emb_model_pq = EMB_MODEL_PQ[emb_model_name]
    index_name = f"{index_emb_model_name}/index_IVF2048_PQ{emb_model_pq}.faiss"
    faiss_index = get_faiss_index(index_name=index_name)
    faiss_index.nprobe = st.session_state.nprobe
    loading_placeholder.text("⏳ Loading - Huggingface Dataset...")
    ds = get_wikija_ds()
    loading_placeholder.empty()

    if st.button("Search"):
        answer_header = st.empty()
        answer_text_buffer = st.empty()

        question = st.session_state.question
        top_k = st.session_state.top_k
        scores = []
        passages = []
        search_results, emb_exec_time, faiss_seartch_time = search(
            faiss_index,
            emb_model,
            ds,
            question,
            search_text_prefix=search_text_prefix,
            top_k=top_k,
        )
        st.subheader("Search Results: ")
        st.write(
            f"⏱️ generate embedding: {emb_exec_time*1000:.2f}ms /  faiss search: {faiss_seartch_time*1000:.2f}ms"
        )
        for score, passage in search_results:
            scores.append(score)
            passages.append(passage)
        df = to_df(scores, passages)
        st.dataframe(df, hide_index=True)

        openai_api_key = st.session_state.openai_api_key
        if openai_api_key:
            openai_api_key = openai_api_key.strip()
            answer_header.subheader("Answer: ")
            openai_model_name = st.session_state.openai_model_name
            temperature = st.session_state.temperature
            qa_prompt = st.session_state.qa_prompt
            max_tokens = st.session_state.max_tokens
            generate_answer(
                openai_api_key=openai_api_key,
                buf=answer_text_buffer,
                question=question,
                passages=passages,
                model_name=openai_model_name,
                temperature=temperature,
                qa_prompt=qa_prompt,
                max_tokens=max_tokens,
            )


if __name__ == "__main__":
    app()