Spaces:
Runtime error
Runtime error
File size: 5,933 Bytes
17d0a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
from toolbox import trimmed_format_exc, get_conf, ProxyNetworkActivate
from crazy_functions.agent_fns.pipe import PluginMultiprocessManager, PipeCom
from request_llms.bridge_all import predict_no_ui_long_connection
import time
def gpt_academic_generate_oai_reply(
self,
messages,
sender,
config,
):
llm_config = self.llm_config if config is None else config
if llm_config is False:
return False, None
if messages is None:
messages = self._oai_messages[sender]
inputs = messages[-1]['content']
history = []
for message in messages[:-1]:
history.append(message['content'])
context=messages[-1].pop("context", None)
assert context is None, "预留参数 context 未实现"
reply = predict_no_ui_long_connection(
inputs=inputs,
llm_kwargs=llm_config,
history=history,
sys_prompt=self._oai_system_message[0]['content'],
console_slience=True
)
assumed_done = reply.endswith('\nTERMINATE')
return True, reply
class AutoGenGeneral(PluginMultiprocessManager):
def gpt_academic_print_override(self, user_proxy, message, sender):
# ⭐⭐ run in subprocess
self.child_conn.send(PipeCom("show", sender.name + "\n\n---\n\n" + message["content"]))
def gpt_academic_get_human_input(self, user_proxy, message):
# ⭐⭐ run in subprocess
patience = 300
begin_waiting_time = time.time()
self.child_conn.send(PipeCom("interact", message))
while True:
time.sleep(0.5)
if self.child_conn.poll():
wait_success = True
break
if time.time() - begin_waiting_time > patience:
self.child_conn.send(PipeCom("done", ""))
wait_success = False
break
if wait_success:
return self.child_conn.recv().content
else:
raise TimeoutError("等待用户输入超时")
def define_agents(self):
raise NotImplementedError
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
user_proxy = None
assistant = None
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop('cls')
kwargs = {
'llm_config':self.llm_kwargs,
'code_execution_config':code_execution_config
}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a,b: self.gpt_academic_print_override(agent_kwargs, a, b)
for d in agent_handle._reply_func_list:
if hasattr(d['reply_func'],'__name__') and d['reply_func'].__name__ == 'generate_oai_reply':
d['reply_func'] = gpt_academic_generate_oai_reply
if agent_kwargs['name'] == 'user_proxy':
agent_handle.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
user_proxy = agent_handle
if agent_kwargs['name'] == 'assistant': assistant = agent_handle
try:
if user_proxy is None or assistant is None: raise Exception("用户代理或助理代理未定义")
user_proxy.initiate_chat(assistant, message=input)
except Exception as e:
tb_str = '```\n' + trimmed_format_exc() + '```'
self.child_conn.send(PipeCom("done", "AutoGen 执行失败: \n\n" + tb_str))
def subprocess_worker(self, child_conn):
# ⭐⭐ run in subprocess
self.child_conn = child_conn
while True:
msg = self.child_conn.recv() # PipeCom
self.exe_autogen(msg)
class AutoGenGroupChat(AutoGenGeneral):
def exe_autogen(self, input):
# ⭐⭐ run in subprocess
import autogen
input = input.content
with ProxyNetworkActivate("AutoGen"):
code_execution_config = {"work_dir": self.autogen_work_dir, "use_docker": self.use_docker}
agents = self.define_agents()
agents_instances = []
for agent_kwargs in agents:
agent_cls = agent_kwargs.pop("cls")
kwargs = {"code_execution_config": code_execution_config}
kwargs.update(agent_kwargs)
agent_handle = agent_cls(**kwargs)
agent_handle._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
agents_instances.append(agent_handle)
if agent_kwargs["name"] == "user_proxy":
user_proxy = agent_handle
user_proxy.get_human_input = lambda a: self.gpt_academic_get_human_input(user_proxy, a)
try:
groupchat = autogen.GroupChat(agents=agents_instances, messages=[], max_round=50)
manager = autogen.GroupChatManager(groupchat=groupchat, **self.define_group_chat_manager_config())
manager._print_received_message = lambda a, b: self.gpt_academic_print_override(agent_kwargs, a, b)
manager.get_human_input = lambda a: self.gpt_academic_get_human_input(manager, a)
if user_proxy is None:
raise Exception("user_proxy is not defined")
user_proxy.initiate_chat(manager, message=input)
except Exception:
tb_str = "```\n" + trimmed_format_exc() + "```"
self.child_conn.send(PipeCom("done", "AutoGen exe failed: \n\n" + tb_str))
def define_group_chat_manager_config(self):
raise NotImplementedError
|