open-sora / app.py
ver217's picture
Update app.py
e8b9ffe verified
#!/usr/bin/env python
"""
This script runs a Gradio App for the Open-Sora model.
Usage:
python demo.py <config-path>
"""
import argparse
import datetime
import importlib
import os
import subprocess
import sys
from tempfile import NamedTemporaryFile
import spaces
import torch
import gradio as gr
MODEL_TYPES = ["v1.2-stage3"]
WATERMARK_PATH = "./assets/images/watermark/watermark.png"
CONFIG_MAP = {
"v1.2-stage3": "configs/opensora-v1-2/inference/sample.py",
}
HF_STDIT_MAP = {"v1.2-stage3": "hpcai-tech/OpenSora-STDiT-v3"}
# ============================
# Prepare Runtime Environment
# ============================
def install_dependencies(enable_optimization=False):
"""
Install the required dependencies for the demo if they are not already installed.
"""
def _is_package_available(name) -> bool:
try:
importlib.import_module(name)
return True
except (ImportError, ModuleNotFoundError):
return False
if enable_optimization:
# install flash attention
if not _is_package_available("flash_attn"):
subprocess.run(
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
# install apex for fused layernorm
if not _is_package_available("apex"):
subprocess.run(
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
shell=True,
)
# install ninja
if not _is_package_available("ninja"):
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
# install xformers
if not _is_package_available("xformers"):
subprocess.run(
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
shell=True,
)
# ============================
# Model-related
# ============================
def read_config(config_path):
"""
Read the configuration file.
"""
from mmengine.config import Config
return Config.fromfile(config_path)
def build_models(model_type, config, enable_optimization=False):
"""
Build the models for the given model type and configuration.
"""
# build vae
from opensora.registry import MODELS, build_module
vae = build_module(config.vae, MODELS).cuda()
# build text encoder
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
text_encoder.t5.model = text_encoder.t5.model.cuda()
# build stdit
# we load model from HuggingFace directly so that we don't need to
# handle model download logic in HuggingFace Space
from opensora.models.stdit.stdit3 import STDiT3
model_kwargs = {k: v for k, v in config.model.items() if k not in ("type", "from_pretrained", "force_huggingface")}
stdit = STDiT3.from_pretrained(HF_STDIT_MAP[model_type], **model_kwargs)
stdit = stdit.cuda()
# build scheduler
from opensora.registry import SCHEDULERS
scheduler = build_module(config.scheduler, SCHEDULERS)
# hack for classifier-free guidance
text_encoder.y_embedder = stdit.y_embedder
# move modelst to device
vae = vae.to(torch.bfloat16).eval()
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
stdit = stdit.to(torch.bfloat16).eval()
# clear cuda
torch.cuda.empty_cache()
return vae, text_encoder, stdit, scheduler
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model-type",
default="v1.2-stage3",
choices=MODEL_TYPES,
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
)
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
parser.add_argument("--host", default="0.0.0.0", type=str, help="The host to run the Gradio App on.")
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
parser.add_argument(
"--enable-optimization",
action="store_true",
help="Whether to enable optimization such as flash attention and fused layernorm",
)
return parser.parse_args()
# ============================
# Main Gradio Script
# ============================
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
# so we can't pass the models to `run_inference` as arguments.
# instead, we need to define them globally so that we can access these models inside `run_inference`
# read config
args = parse_args()
config = read_config(CONFIG_MAP[args.model_type])
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# make outputs dir
os.makedirs(args.output, exist_ok=True)
# disable torch jit as it can cause failure in gradio SDK
# gradio sdk uses torch with cuda 11.3
torch.jit._state.disable()
# set up
install_dependencies(enable_optimization=args.enable_optimization)
# import after installation
from opensora.datasets import IMG_FPS, save_sample
from opensora.datasets.aspect import get_image_size, get_num_frames
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_random_prompt_by_openai,
has_openai_key,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt,
)
from opensora.utils.misc import to_torch_dtype
# some global variables
dtype = to_torch_dtype(config.dtype)
device = torch.device("cuda")
# build model
vae, text_encoder, stdit, scheduler = build_models(
args.model_type, config, enable_optimization=args.enable_optimization
)
def run_inference(
mode,
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
if prompt_text is None or prompt_text == "":
gr.Warning("Your prompt is empty, please enter a valid prompt")
return None
torch.manual_seed(seed)
with torch.inference_mode():
# ======================
# 1. Preparation arguments
# ======================
# parse the inputs
# frame_interval must be 1 so we ignore it here
image_size = get_image_size(resolution, aspect_ratio)
# compute generation parameters
if mode == "Text2Image":
num_frames = 1
fps = IMG_FPS
else:
num_frames = config.num_frames
num_frames = get_num_frames(length)
condition_frame_length = int(num_frames / 17 * 5 / 3)
condition_frame_edit = 0.0
input_size = (num_frames, *image_size)
latent_size = vae.get_latent_size(input_size)
multi_resolution = "OpenSora"
align = 5
# == prepare mask strategy ==
if mode == "Text2Image":
mask_strategy = [None]
elif mode == "Text2Video":
if reference_image is not None:
mask_strategy = ["0"]
else:
mask_strategy = [None]
else:
raise ValueError(f"Invalid mode: {mode}")
# == prepare reference ==
if mode == "Text2Image":
refs = [""]
elif mode == "Text2Video":
if reference_image is not None:
# save image to disk
from PIL import Image
im = Image.fromarray(reference_image)
temp_file = NamedTemporaryFile(suffix=".png")
im.save(temp_file.name)
refs = [temp_file.name]
else:
refs = [""]
else:
raise ValueError(f"Invalid mode: {mode}")
# == get json from prompts ==
batch_prompts = [prompt_text]
batch_prompts, refs, mask_strategy = extract_json_from_prompts(batch_prompts, refs, mask_strategy)
# == get reference for condition ==
refs = collect_references_batch(refs, vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if refine_prompt:
# check if openai key is provided
if not has_openai_key():
gr.Warning("OpenAI API key is not provided, the prompt will not be enhanced.")
else:
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# process scores
aesthetic_score = aesthetic_score if use_aesthetic_score else None
motion_strength = motion_strength if use_motion_strength and mode != "Text2Image" else None
camera_motion = None if camera_motion == "none" or mode == "Text2Image" else camera_motion
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=aesthetic_score,
flow=motion_strength,
camera_motion=camera_motion,
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# =========================
# Generate image/video
# =========================
video_clips = []
for loop_i in range(num_loop):
# 4.4 sample in hidden space
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == loop ==
if loop_i > 0:
refs, mask_strategy = append_generated(
vae, video_clips[-1], refs, mask_strategy, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
masks = apply_mask_strategy(z, refs, mask_strategy, loop_i, align=align)
# 4.6. diffusion sampling
# hack to update num_sampling_steps and cfg_scale
scheduler_kwargs = config.scheduler.copy()
scheduler_kwargs.pop("type")
scheduler_kwargs["num_sampling_steps"] = sampling_steps
scheduler_kwargs["cfg_scale"] = cfg_scale
scheduler.__init__(**scheduler_kwargs)
samples = scheduler.sample(
stdit,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=True,
mask=masks,
)
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
video_clips.append(samples)
# =========================
# Save output
# =========================
video_clips = [val[0] for val in video_clips]
for i in range(1, num_loop):
video_clips[i] = video_clips[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video_clips, dim=1)
current_datetime = datetime.datetime.now()
timestamp = current_datetime.timestamp()
save_path = os.path.join(args.output, f"output_{timestamp}")
saved_path = save_sample(video, save_path=save_path, fps=24)
torch.cuda.empty_cache()
# add watermark
# all watermarked videos should have a _watermarked suffix
if mode != "Text2Image" and os.path.exists(WATERMARK_PATH):
watermarked_path = saved_path.replace(".mp4", "_watermarked.mp4")
success = add_watermark(saved_path, WATERMARK_PATH, watermarked_path)
if success:
return watermarked_path
else:
return saved_path
else:
return saved_path
@spaces.GPU(duration=200)
def run_image_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
return run_inference(
"Text2Image",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
@spaces.GPU(duration=200)
def run_video_inference(
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
):
# if (resolution == "480p" and length == "16s") or \
# (resolution == "720p" and length in ["8s", "16s"]):
# gr.Warning("Generation is interrupted as the combination of 480p and 16s will lead to CUDA out of memory")
# else:
return run_inference(
"Text2Video",
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
)
def generate_random_prompt():
if "OPENAI_API_KEY" not in os.environ:
gr.Warning("Your prompt is empty and the OpenAI API key is not provided, please enter a valid prompt")
return None
else:
prompt_text = get_random_prompt_by_openai()
return prompt_text
def main():
# create demo
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.HTML(
"""
<div style='text-align: center;'>
<p align="center">
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
</p>
<div style="display: flex; gap: 10px; justify-content: center;">
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&amp"></a>
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&amp"></a>
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&amp"></a>
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&amp"></a>
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&amp"></a>
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
</div>
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
</div>
"""
)
with gr.Row():
with gr.Column():
prompt_text = gr.Textbox(label="Prompt", placeholder="Describe your video here", lines=4)
refine_prompt = gr.Checkbox(
value=has_openai_key(), label="Refine prompt with GPT4o", interactive=has_openai_key()
)
random_prompt_btn = gr.Button("Random Prompt By GPT4o", interactive=has_openai_key())
gr.Markdown("## Basic Settings")
resolution = gr.Radio(
choices=["144p", "240p", "360p", "480p", "720p"],
value="480p",
label="Resolution",
)
aspect_ratio = gr.Radio(
choices=["9:16", "16:9", "3:4", "4:3", "1:1"],
value="9:16",
label="Aspect Ratio (H:W)",
)
length = gr.Radio(
choices=["2s", "4s", "8s", "16s"],
value="2s",
label="Video Length",
info="only effective for video generation, 8s may fail as Hugging Face ZeroGPU has the limitation of max 200 seconds inference time.",
)
with gr.Row():
seed = gr.Slider(value=1024, minimum=1, maximum=2048, step=1, label="Seed")
sampling_steps = gr.Slider(value=30, minimum=1, maximum=200, step=1, label="Sampling steps")
cfg_scale = gr.Slider(value=7.0, minimum=0.0, maximum=10.0, step=0.1, label="CFG Scale")
with gr.Row():
with gr.Column():
motion_strength = gr.Slider(
value=5,
minimum=0,
maximum=100,
step=1,
label="Motion Strength",
info="only effective for video generation",
)
use_motion_strength = gr.Checkbox(value=False, label="Enable")
with gr.Column():
aesthetic_score = gr.Slider(
value=6.5,
minimum=4,
maximum=7,
step=0.1,
label="Aesthetic",
info="effective for text & video generation",
)
use_aesthetic_score = gr.Checkbox(value=True, label="Enable")
camera_motion = gr.Radio(
value="none",
label="Camera Motion",
choices=["none", "pan right", "pan left", "tilt up", "tilt down", "zoom in", "zoom out", "static"],
interactive=True,
)
gr.Markdown("## Advanced Settings")
with gr.Row():
fps = gr.Slider(
value=24,
minimum=1,
maximum=60,
step=1,
label="FPS",
info="This is the frames per seconds for video generation, keep it to 24 if you are not sure",
)
num_loop = gr.Slider(
value=1,
minimum=1,
maximum=20,
step=1,
label="Number of Loops",
info="This will change the length of the generated video, keep it to 1 if you are not sure",
)
gr.Markdown("## Reference Image")
reference_image = gr.Image(label="Image (optional)", show_download_button=True)
with gr.Column():
output_video = gr.Video(label="Output Video", height="100%")
with gr.Row():
image_gen_button = gr.Button("Generate image")
video_gen_button = gr.Button("Generate video")
image_gen_button.click(
fn=run_image_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=reference_image,
)
video_gen_button.click(
fn=run_video_inference,
inputs=[
prompt_text,
resolution,
aspect_ratio,
length,
motion_strength,
aesthetic_score,
use_motion_strength,
use_aesthetic_score,
camera_motion,
reference_image,
refine_prompt,
fps,
num_loop,
seed,
sampling_steps,
cfg_scale,
],
outputs=output_video,
)
random_prompt_btn.click(fn=generate_random_prompt, outputs=prompt_text)
# launch
demo.queue(max_size=5, default_concurrency_limit=1)
demo.launch(server_port=args.port, server_name=args.host, share=args.share, max_threads=1)
if __name__ == "__main__":
main()