Spaces:
Sleeping
Sleeping
#using pipeline to predict the input text | |
from transformers import pipeline | |
import torch | |
label_mapping = { | |
'delete': [0, 'LABEL_0'], | |
'keep': [1, 'LABEL_1'], | |
'merge': [2, 'LABEL_2'], | |
'no consensus': [3, 'LABEL_3'], | |
'speedy keep': [4, 'LABEL_4'], | |
'speedy delete': [5, 'LABEL_5'], | |
'redirect': [6, 'LABEL_6'], | |
'withdrawn': [7, 'LABEL_7'] | |
} | |
def predict_text(text, model_name): | |
model = pipeline("text-classification", model=model_name, return_all_scores=True) | |
results = model(text) | |
final_scores = {key: 0.0 for key in label_mapping} | |
for result in results[0]: | |
for key, value in label_mapping.items(): | |
if result['label'] == value[1]: | |
final_scores[key] = result['score'] | |
break | |
return final_scores | |