Spaces:
Sleeping
Sleeping
hsuvaskakoty
commited on
Commit
•
3c77d98
1
Parent(s):
3ba1861
initial commit
Browse files- app.py +41 -0
- data_prep.py +131 -0
- model_predict.py +28 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import data_prep
|
2 |
+
import model_predict
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
# Dictionary of model names and corresponding display names
|
6 |
+
model_dict = {
|
7 |
+
"bert-base": "research-dump/bert-base-uncased_deletion_multiclass_complete_Final",
|
8 |
+
"bert-large": "research-dump/bert-large-uncased_deletion_multiclass_complete_final",
|
9 |
+
"roberta-base": "research-dump/roberta-base_deletion_multiclass_complete_final"
|
10 |
+
}
|
11 |
+
|
12 |
+
def process_url(url, model_key):
|
13 |
+
# Get the actual model path from the model_dict
|
14 |
+
model_name = model_dict[model_key]
|
15 |
+
|
16 |
+
# Process the text from the URL
|
17 |
+
processed_text = data_prep.process_data(url)
|
18 |
+
|
19 |
+
# Predict the labels and their probabilities
|
20 |
+
final_scores = model_predict.predict_text(processed_text, model_name)
|
21 |
+
|
22 |
+
# Find the label with the highest probability
|
23 |
+
highest_prob_label = max(final_scores, key=final_scores.get)
|
24 |
+
highest_prob = final_scores[highest_prob_label]
|
25 |
+
|
26 |
+
# Create progress bar style output for all labels
|
27 |
+
progress_bars = {label: score for label, score in final_scores.items()}
|
28 |
+
|
29 |
+
return highest_prob_label, highest_prob, progress_bars
|
30 |
+
|
31 |
+
# Define the interface for the Gradio app
|
32 |
+
url_input = gr.Textbox(label="URL")
|
33 |
+
model_name_input = gr.Dropdown(label="Model Name", choices=list(model_dict.keys()), value=list(model_dict.keys())[0])
|
34 |
+
outputs = [
|
35 |
+
gr.Textbox(label="Label with Highest Probability"),
|
36 |
+
gr.Textbox(label="Probability"),
|
37 |
+
gr.JSON(label="All Labels and Probabilities")
|
38 |
+
]
|
39 |
+
|
40 |
+
demo = gr.Interface(fn=process_url, inputs=[url_input, model_name_input], outputs=outputs)
|
41 |
+
demo.launch()
|
data_prep.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import pandas as pd
|
3 |
+
from bs4 import BeautifulSoup
|
4 |
+
import pandas as pd
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
|
8 |
+
def extract_div_contents_from_url(url):
|
9 |
+
response = requests.get(url)
|
10 |
+
if response.status_code != 200:
|
11 |
+
return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
|
12 |
+
|
13 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
14 |
+
divs = soup.find_all('div', class_='boilerplate afd vfd xfd-closed archived mw-archivedtalk')
|
15 |
+
|
16 |
+
# Extract the title fragment from the URL
|
17 |
+
url_fragment = url.split('#')[-1].replace('_', ' ')
|
18 |
+
|
19 |
+
data = []
|
20 |
+
for div in divs:
|
21 |
+
try:
|
22 |
+
title = None
|
23 |
+
text_url = None
|
24 |
+
|
25 |
+
# Extract title and text_url
|
26 |
+
title_tag = div.find('a')
|
27 |
+
if title_tag:
|
28 |
+
title_span = div.find('span', {'data-mw-comment-start': True})
|
29 |
+
if title_span:
|
30 |
+
title_anchor = title_span.find_next_sibling('a')
|
31 |
+
if title_anchor:
|
32 |
+
title = title_anchor.text
|
33 |
+
text_url = 'https://en.wikipedia.org' + title_anchor['href']
|
34 |
+
else:
|
35 |
+
title = title_tag.text
|
36 |
+
text_url = 'https://en.wikipedia.org' + title_tag['href']
|
37 |
+
|
38 |
+
if title == 'talk page' or title is None:
|
39 |
+
heading_tag = div.find('div', class_='mw-heading mw-heading3')
|
40 |
+
if heading_tag:
|
41 |
+
title_tag = heading_tag.find('a')
|
42 |
+
if title_tag:
|
43 |
+
title = title_tag.text
|
44 |
+
text_url = 'https://en.wikipedia.org' + title_tag['href']
|
45 |
+
|
46 |
+
if title != url_fragment:
|
47 |
+
continue # Skip if the title does not match the URL fragment
|
48 |
+
|
49 |
+
deletion_discussion = div.prettify()
|
50 |
+
|
51 |
+
# Extract label
|
52 |
+
label = ''
|
53 |
+
verdict_tag = div.find('p')
|
54 |
+
if verdict_tag:
|
55 |
+
label_b_tag = verdict_tag.find('b')
|
56 |
+
if label_b_tag:
|
57 |
+
label = label_b_tag.text.strip()
|
58 |
+
|
59 |
+
# Extract confirmation
|
60 |
+
confirmation = ''
|
61 |
+
discussion_tag = div.find('dd').find('i')
|
62 |
+
if discussion_tag:
|
63 |
+
confirmation_b_tag = discussion_tag.find('b')
|
64 |
+
if confirmation_b_tag:
|
65 |
+
confirmation = confirmation_b_tag.text.strip()
|
66 |
+
|
67 |
+
# Split deletion_discussion into discussion and verdict
|
68 |
+
parts = deletion_discussion.split('<div class="mw-heading mw-heading3">')
|
69 |
+
discussion = parts[0] if len(parts) > 0 else ''
|
70 |
+
verdict = '<div class="mw-heading mw-heading3">' + parts[1] if len(parts) > 1 else ''
|
71 |
+
|
72 |
+
data.append([title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Error processing div: {e}")
|
75 |
+
continue
|
76 |
+
|
77 |
+
df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
|
78 |
+
df = df[['title','discussion','verdict','label']]
|
79 |
+
return df
|
80 |
+
|
81 |
+
|
82 |
+
def extract_post_links_text(discussion_html):
|
83 |
+
split_point = '<span class="plainlinks">'
|
84 |
+
if split_point in discussion_html:
|
85 |
+
parts = discussion_html.split(split_point)
|
86 |
+
if len(parts) > 1:
|
87 |
+
return parts[1]
|
88 |
+
return discussion_html
|
89 |
+
|
90 |
+
def process_discussion(df):
|
91 |
+
df['discussion_cleaned'] = df['verdict'].apply(extract_post_links_text)
|
92 |
+
return df
|
93 |
+
|
94 |
+
def html_to_plaintext(html_content):
|
95 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
96 |
+
for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
|
97 |
+
tag.insert_before('\n')
|
98 |
+
tag.insert_after('\n')
|
99 |
+
for br in soup.find_all('br'):
|
100 |
+
br.replace_with('\n')
|
101 |
+
|
102 |
+
text = soup.get_text(separator=' ', strip=True)
|
103 |
+
text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
|
104 |
+
|
105 |
+
return text
|
106 |
+
def process_html_to_plaintext(df):
|
107 |
+
df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
|
108 |
+
df = df[['title', 'discussion_cleaned', 'label']]
|
109 |
+
return df
|
110 |
+
|
111 |
+
import pysbd
|
112 |
+
def split_text_into_sentences(text):
|
113 |
+
seg = pysbd.Segmenter(language="en", clean=False)
|
114 |
+
sentences = seg.segment(text)
|
115 |
+
return ' '.join(sentences[1:])
|
116 |
+
def process_split_text_into_sentences(df):
|
117 |
+
df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
|
118 |
+
return df
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
def process_data(url):
|
123 |
+
df = extract_div_contents_from_url(url)
|
124 |
+
df = process_discussion(df)
|
125 |
+
df = process_html_to_plaintext(df)
|
126 |
+
df = process_split_text_into_sentences(df)
|
127 |
+
#if not empty
|
128 |
+
if not df.empty:
|
129 |
+
return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
|
130 |
+
else:
|
131 |
+
return 'Empty DataFrame'
|
model_predict.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#using pipeline to predict the input text
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
label_mapping = {
|
6 |
+
'delete': [0, 'LABEL_0'],
|
7 |
+
'keep': [1, 'LABEL_1'],
|
8 |
+
'merge': [2, 'LABEL_2'],
|
9 |
+
'no consensus': [3, 'LABEL_3'],
|
10 |
+
'speedy keep': [4, 'LABEL_4'],
|
11 |
+
'speedy delete': [5, 'LABEL_5'],
|
12 |
+
'redirect': [6, 'LABEL_6'],
|
13 |
+
'withdrawn': [7, 'LABEL_7']
|
14 |
+
}
|
15 |
+
|
16 |
+
def predict_text(text, model_name):
|
17 |
+
model = pipeline("text-classification", model=model_name, return_all_scores=True)
|
18 |
+
results = model(text)
|
19 |
+
final_scores = {key: 0.0 for key in label_mapping}
|
20 |
+
|
21 |
+
for result in results[0]:
|
22 |
+
for key, value in label_mapping.items():
|
23 |
+
if result['label'] == value[1]:
|
24 |
+
final_scores[key] = result['score']
|
25 |
+
break
|
26 |
+
|
27 |
+
return final_scores
|
28 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
requests
|
2 |
+
beautifulsoup4
|
3 |
+
pandas
|
4 |
+
numpy
|
5 |
+
pysbd
|
6 |
+
transformers
|
7 |
+
torch
|