import requests
import pandas as pd
from bs4 import BeautifulSoup
import pandas as pd
from datetime import datetime
def extract_div_contents_from_url(url):
response = requests.get(url)
if response.status_code != 200:
return pd.DataFrame(columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'discussion', 'verdict'])
soup = BeautifulSoup(response.content, 'html.parser')
divs = soup.find_all('div', class_='boilerplate afd vfd xfd-closed archived mw-archivedtalk')
# Extract the title fragment from the URL
url_fragment = url.split('#')[-1].replace('_', ' ')
data = []
for div in divs:
try:
title = None
text_url = None
# Extract title and text_url
title_tag = div.find('a')
if title_tag:
title_span = div.find('span', {'data-mw-comment-start': True})
if title_span:
title_anchor = title_span.find_next_sibling('a')
if title_anchor:
title = title_anchor.text
text_url = 'https://en.wikipedia.org' + title_anchor['href']
else:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title == 'talk page' or title is None:
heading_tag = div.find('div', class_='mw-heading mw-heading3')
if heading_tag:
title_tag = heading_tag.find('a')
if title_tag:
title = title_tag.text
text_url = 'https://en.wikipedia.org' + title_tag['href']
if title != url_fragment:
continue # Skip if the title does not match the URL fragment
deletion_discussion = div.prettify()
# Extract label
label = ''
verdict_tag = div.find('p')
if verdict_tag:
label_b_tag = verdict_tag.find('b')
if label_b_tag:
label = label_b_tag.text.strip()
# Extract confirmation
confirmation = ''
discussion_tag = div.find('dd').find('i')
if discussion_tag:
confirmation_b_tag = discussion_tag.find('b')
if confirmation_b_tag:
confirmation = confirmation_b_tag.text.strip()
# Split deletion_discussion into discussion and verdict
parts = deletion_discussion.split('
')
discussion = parts[0] if len(parts) > 0 else ''
verdict = '
' + parts[1] if len(parts) > 1 else ''
data.append([title, text_url, deletion_discussion, label, confirmation, verdict, discussion])
except Exception as e:
print(f"Error processing div: {e}")
continue
df = pd.DataFrame(data, columns=['title', 'text_url', 'deletion_discussion', 'label', 'confirmation', 'verdict', 'discussion'])
df = df[['title','discussion','verdict','label']]
return df
def extract_post_links_text(discussion_html):
split_point = ''
if split_point in discussion_html:
parts = discussion_html.split(split_point)
if len(parts) > 1:
return parts[1]
return discussion_html
def process_discussion(df):
df['discussion_cleaned'] = df['verdict'].apply(extract_post_links_text)
return df
def html_to_plaintext(html_content):
soup = BeautifulSoup(html_content, 'html.parser')
for tag in soup.find_all(['p', 'li', 'dd', 'dl']):
tag.insert_before('\n')
tag.insert_after('\n')
for br in soup.find_all('br'):
br.replace_with('\n')
text = soup.get_text(separator=' ', strip=True)
text = '\n'.join([line.strip() for line in text.splitlines() if line.strip() != ''])
return text
def process_html_to_plaintext(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(html_to_plaintext)
df = df[['title', 'discussion_cleaned', 'label']]
return df
import pysbd
def split_text_into_sentences(text):
seg = pysbd.Segmenter(language="en", clean=False)
sentences = seg.segment(text)
return ' '.join(sentences[1:])
def process_split_text_into_sentences(df):
df['discussion_cleaned'] = df['discussion_cleaned'].apply(split_text_into_sentences)
return df
def process_data(url):
df = extract_div_contents_from_url(url)
df = process_discussion(df)
df = process_html_to_plaintext(df)
df = process_split_text_into_sentences(df)
#if not empty
if not df.empty:
return df.at[0,'title']+ ' : '+df.at[0, 'discussion_cleaned']
else:
return 'Empty DataFrame'