Spaces:
Sleeping
Sleeping
File size: 4,125 Bytes
93b0d61 d02e94c 210813d 1d17134 93b0d61 6904e5b 93b0d61 6ac807a 93b0d61 6904e5b 93b0d61 4265f46 93b0d61 c082d19 6ac807a 93b0d61 07a5035 93b0d61 fccb498 93b0d61 c082d19 93b0d61 3817d9d 93b0d61 3694e73 93b0d61 bbecbd7 93b0d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
from optimum.intel.openvino.modeling_diffusion import OVModelVaeDecoder, OVBaseModel, OVStableDiffusionPipeline
import torch
from huggingface_hub import snapshot_download
import openvino.runtime as ov
from typing import Optional, Dict
from diffusers import EulerAncestralDiscreteScheduler, LCMScheduler
#LCMScheduler 產生垃圾
#EulerDiscreteScheduler 尚可
#EulerAncestralDiscreteScheduler 很不錯chatgpt推薦
model_id = "hsuwill000/anything-v5-openvino"
#adapter_id = "latent-consistency/lcm-lora-sdv1-5"
#1024*512 記憶體不足
HIGH=512
WIDTH=512
batch_size = -1
pipe = OVStableDiffusionPipeline.from_pretrained(
model_id,
compile = False,
ov_config = {"CACHE_DIR":""},
torch_dtype=torch.int8, #快
#torch_dtype=torch.bfloat16, #中
#variant="fp16",
#torch_dtype=torch.IntTensor, #慢,
safety_checker=None,
use_safetensors=False,
)
print(pipe.scheduler.compatibles)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
#pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
#pipe.load_lora_weights(adapter_id)
#pipe.fuse_lora()
pipe.reshape( batch_size=-1, height=HIGH, width=WIDTH, num_images_per_prompt=1)
#pipe.load_textual_inversion("./badhandv4.pt", "badhandv4")
#pipe.load_textual_inversion("./Konpeto.pt", "Konpeto")
#<shigure-ui-style>
#pipe.load_textual_inversion("sd-concepts-library/shigure-ui-style")
#pipe.load_textual_inversion("sd-concepts-library/ruan-jia")
#pipe.load_textual_inversion("sd-concepts-library/agm-style-nao")
pipe.compile()
prompt=""
negative_prompt="(worst quality, low quality, lowres, ), zombie, interlocked fingers, large breasts, username, watermark,"
def infer(prompt,negative_prompt):
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
width = WIDTH,
height = HIGH,
guidance_scale=7.5,
num_inference_steps=30,
num_images_per_prompt=1,
).images[0]
return image
examples = [
"Sailor Chibi Moon, Katsura Masakazu style,close-up,",
"1girl, silver hair, symbol-shaped pupils, yellow eyes, smiling, light particles, light rays, wallpaper, star guardian, serious face, red inner hair, power aura, grandmaster1, golden and white clothes",
"masterpiece, best quality, highres booru, 1girl, solo, depth of field, rim lighting, flowers, petals, from above, crystals, butterfly, vegetation, aura, magic, hatsune miku, blush, slight smile, close-up, against wall,",
"close-up,(illustration, 8k CG, extremely detailed),(whimsical),catgirl,teenage girl,playing in the snow,winter wonderland,snow-covered trees,soft pastel colors,gentle lighting,sparkling snow,joyful,magical atmosphere,highly detailed,fluffy cat ears and tail,intricate winter clothing,shallow depth of field,watercolor techniques,close-up shot,slightly tilted angle,fairy tale architecture,nostalgic,playful,winter magic,(masterpiece:2),best quality,ultra highres,original,extremely detailed,perfect lighting,",
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# anything-v5-openvino {WIDTH}x{HIGH}
Currently running on {power_device}.
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt],
outputs = [result]
)
run_button.click(
fn = infer,
inputs = [prompt],
outputs = [result]
)
demo.queue().launch() |