Spaces:
Runtime error
Runtime error
| # {% include 'template/license_header' %} | |
| from typing import Optional | |
| from uuid import UUID | |
| from steps import model_evaluator, model_trainer, model_promoter | |
| from zenml import ExternalArtifact, pipeline | |
| from zenml.logger import get_logger | |
| from pipelines import ( | |
| feature_engineering, | |
| ) | |
| logger = get_logger(__name__) | |
| def breast_cancer_training( | |
| train_dataset_id: Optional[UUID] = None, | |
| test_dataset_id: Optional[UUID] = None, | |
| min_train_accuracy: float = 0.0, | |
| min_test_accuracy: float = 0.0, | |
| ): | |
| """ | |
| Model training pipeline. | |
| This is a pipeline that loads the data, processes it and splits | |
| it into train and test sets, then search for best hyperparameters, | |
| trains and evaluates a model. | |
| Args: | |
| test_size: Size of holdout set for training 0.0..1.0 | |
| drop_na: If `True` NA values will be removed from dataset | |
| normalize: If `True` dataset will be normalized with MinMaxScaler | |
| drop_columns: List of columns to drop from dataset | |
| """ | |
| ### ADD YOUR OWN CODE HERE - THIS IS JUST AN EXAMPLE ### | |
| # Link all the steps together by calling them and passing the output | |
| # of one step as the input of the next step. | |
| # Execute Feature Engineering Pipeline | |
| if train_dataset_id is None or test_dataset_id is None: | |
| dataset_trn, dataset_tst = feature_engineering() | |
| else: | |
| dataset_trn = ExternalArtifact(id=train_dataset_id) | |
| dataset_tst = ExternalArtifact(id=test_dataset_id) | |
| model = model_trainer( | |
| dataset_trn=dataset_trn, | |
| ) | |
| acc = model_evaluator( | |
| model=model, | |
| dataset_trn=dataset_trn, | |
| dataset_tst=dataset_tst, | |
| min_train_accuracy=min_train_accuracy, | |
| min_test_accuracy=min_test_accuracy, | |
| ) | |
| model_promoter(accuracy=acc) | |
| ### END CODE HERE ### | |