# 📜 ZenML Stack Show Case This project aims to demonstrate the power of stacks. The code in this project assumes that you have quite a few stacks registered already. ## default * `default` Orchestrator * `default` Artifact Store ```commandline zenml stack set default python run.py --training-pipeline ``` ## local-sagemaker-step-operator-stack * `default` Orchestrator * `s3` Artifact Store * `local` Image Builder * `aws` Container Registry * `Sagemaker` Step Operator ```commandline zenml stack set local-sagemaker-step-operator-stack zenml integration install aws -y python run.py --training-pipeline ``` ## sagemaker-airflow-stack * `Airflow` Orchestrator * `s3` Artifact Store * `local` Image Builder * `aws` Container Registry * `Sagemaker` Step Operator ```commandline zenml stack set sagemaker-airflow-stack zenml integration install airflow -y pip install apache-airflow-providers-docker apache-airflow~=2.5.0 zenml stack up python run.py --training-pipeline ``` ## sagemaker-stack * `Sagemaker` Orchestrator * `s3` Artifact Store * `local` Image Builder * `aws` Container Registry * `Sagemaker` Step Operator ```commandline zenml stack set sagemaker-stack python run.py --training-pipeline ```