# {% include 'templates/license_header' %} import os from typing import Optional import click from pipelines import ( feature_engineering, inference, breast_cancer_training, breast_cancer_deployment_pipeline ) from zenml.client import Client from zenml.logger import get_logger logger = get_logger(__name__) @click.command( help=""" ZenML Starter project CLI v0.0.1. Run the ZenML starter project with basic options. Examples: \b # Run the feature engineering pipeline python run.py --feature-pipeline \b # Run the training pipeline python run.py --training-pipeline \b # Run the training pipeline with versioned artifacts python run.py --training-pipeline --train-dataset-version-name=1 --test-dataset-version-name=1 \b # Run the inference pipeline python run.py --inference-pipeline """ ) @click.option( "--train-dataset-name", default="dataset_trn", type=click.STRING, help="The name of the train dataset produced by feature engineering.", ) @click.option( "--train-dataset-version-name", default=None, type=click.STRING, help="Version of the train dataset produced by feature engineering. " "If not specified, a new version will be created.", ) @click.option( "--test-dataset-name", default="dataset_tst", type=click.STRING, help="The name of the test dataset produced by feature engineering.", ) @click.option( "--test-dataset-version-name", default=None, type=click.STRING, help="Version of the test dataset produced by feature engineering. " "If not specified, a new version will be created.", ) @click.option( "--config", default=None, type=click.STRING, help="The name of the config", ) @click.option( "--feature-pipeline", is_flag=True, default=False, help="Whether to run the pipeline that creates the dataset.", ) @click.option( "--training-pipeline", is_flag=True, default=False, help="Whether to run the pipeline that trains the model.", ) @click.option( "--inference-pipeline", is_flag=True, default=False, help="Whether to run the pipeline that performs inference.", ) @click.option( "--deployment-pipeline", is_flag=True, default=False, help="Whether to run the pipeline that deploys the model.", ) def main( train_dataset_name: str = "dataset_trn", train_dataset_version_name: Optional[str] = None, test_dataset_name: str = "dataset_tst", test_dataset_version_name: Optional[str] = None, config: Optional[str] = None, feature_pipeline: bool = False, training_pipeline: bool = False, inference_pipeline: bool = False, deployment_pipeline: bool = False, ): """Main entry point for the pipeline execution. This entrypoint is where everything comes together: * configuring pipeline with the required parameters (some of which may come from command line arguments, but most of which comes from the YAML config files) * launching the pipeline """ config_folder = os.path.join( os.path.dirname(os.path.realpath(__file__)), "configs", ) # Execute Feature Engineering Pipeline if feature_pipeline: pipeline_args = {} pipeline_args["config_path"] = os.path.join( config_folder, "feature_engineering.yaml" ) run_args_feature = {} feature_engineering.with_options(**pipeline_args)(**run_args_feature) logger.info("Feature Engineering pipeline finished successfully!") # Execute Training Pipeline if training_pipeline: pipeline_args = {} if config is None: pipeline_args["config_path"] = os.path.join(config_folder, "training.yaml") else: pipeline_args["config_path"] = os.path.join(config_folder, config) run_args_train = {} # If train_dataset_version_name is specified, use versioned artifacts if train_dataset_version_name or test_dataset_version_name: # However, both train and test dataset versions must be specified assert ( train_dataset_version_name is not None and test_dataset_version_name is not None ) client = Client() train_dataset_artifact = client.get_artifact( train_dataset_name, train_dataset_version_name ) # If train dataset is specified, test dataset must be specified test_dataset_artifact = client.get_artifact( test_dataset_name, test_dataset_version_name ) # Use versioned artifacts run_args_train["train_dataset_id"] = train_dataset_artifact.id run_args_train["test_dataset_id"] = test_dataset_artifact.id breast_cancer_training.with_options(**pipeline_args)(**run_args_train) logger.info("Training pipeline finished successfully!") if inference_pipeline: pipeline_args = {} if config is None: pipeline_args["config_path"] = os.path.join(config_folder, "inference.yaml") else: pipeline_args["config_path"] = os.path.join(config_folder, config) run_args_inference = {} inference.with_options(**pipeline_args)(**run_args_inference) logger.info("Inference pipeline finished successfully!") if deployment_pipeline: pipeline_args = {} pipeline_args["config_path"] = os.path.join(config_folder, "deployment.yaml") run_args_inference = {} breast_cancer_deployment_pipeline.with_options(**pipeline_args)(**run_args_inference) logger.info("Deployment pipeline finished successfully!") if __name__ == "__main__": main()