File size: 1,283 Bytes
b8d5ba9 b495775 5c95f00 91bcd15 4e49bb7 084ed1c 18a5c81 084ed1c bce2c8c 084ed1c a9dd4ad b9ba4f8 084ed1c 5c95f00 084ed1c fde3538 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import torch
import nltk
nltk.download('wordnet')
nltk.download('omw-1.4')
from PIL import Image
from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample,
save_as_images, display_in_terminal)
initial_archi = 'biggan-deep-128' #@param ['biggan-deep-128', 'biggan-deep-256', 'biggan-deep-512'] {allow-input: true}
initial_class = 'dog'
gan_model = BigGAN.from_pretrained(initial_archi)
# Prepare a input
truncation = 0.4
class_vector = one_hot_from_names(initial_class, batch_size=1)
noise_vector = truncated_noise_sample(truncation=truncation, batch_size=1)
# All in tensors
noise_vector = torch.from_numpy(noise_vector)
class_vector = torch.from_numpy(class_vector)
# If you have a GPU, put everything on cuda
#noise_vector = noise_vector.to('cuda')
#class_vector = class_vector.to('cuda')
#gan_model.to('cuda')
# Generate an image
with torch.no_grad():
output = gan_model(noise_vector, class_vector, truncation)
# If you have a GPU put back on CPU
#output = output.to('cpu')
# If you have a sixtel compatible terminal you can display the images in the terminal
# (see https://github.com/saitoha/libsixel for details)
#display_in_terminal(output)
# Save results as png images
#save_as_images(output) |