import torch import nltk nltk.download('wordnet') nltk.download('omw-1.4') from pytorch_pretrained_biggan import (BigGAN, one_hot_from_names, truncated_noise_sample, save_as_images, display_in_terminal) initial_archi = 'biggan-deep-128' #@param ['biggan-deep-128', 'biggan-deep-256', 'biggan-deep-512'] {allow-input: true} initial_class = 'dog' gan_model = BigGAN.from_pretrained(initial_archi) # Prepare a input truncation = 0.4 class_vector = one_hot_from_names(initial_class, batch_size=1) noise_vector = truncated_noise_sample(truncation=truncation, batch_size=1) # All in tensors noise_vector = torch.from_numpy(noise_vector) class_vector = torch.from_numpy(class_vector) # If you have a GPU, put everything on cuda noise_vector = noise_vector.to('cuda') class_vector = class_vector.to('cuda') #gan_model.to('cuda') # Generate an image with torch.no_grad(): output = gan_model(noise_vector, class_vector, truncation) # If you have a GPU put back on CPU output = output.to('cpu') # If you have a sixtel compatible terminal you can display the images in the terminal # (see https://github.com/saitoha/libsixel for details) #display_in_terminal(output) # Save results as png images save_as_images(output)