Spaces:
Runtime error
Runtime error
tediGan
Browse files- app.py +91 -0
- models/__init__.py +0 -0
- models/encoders/__init__.py +0 -0
- models/encoders/helpers.py +119 -0
- models/encoders/model_irse.py +84 -0
- models/encoders/psp_encoders.py +185 -0
- models/psp.py +97 -0
- models/stylegan2/__init__.py +0 -0
- models/stylegan2/model.py +673 -0
- models/stylegan2/op/__init__.py +2 -0
- models/stylegan2/op/fused_act.py +85 -0
- models/stylegan2/op/fused_bias_act.cpp +21 -0
- models/stylegan2/op/fused_bias_act_kernel.cu +99 -0
- models/stylegan2/op/upfirdn2d.cpp +23 -0
- models/stylegan2/op/upfirdn2d.py +184 -0
- models/stylegan2/op/upfirdn2d_kernel.cu +272 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import Namespace
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as transforms
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
from models.psp import pSp
|
12 |
+
|
13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
|
15 |
+
transfroms = transforms.Compose([
|
16 |
+
transforms.Resize((256, 256)),
|
17 |
+
transforms.ToTensor()]
|
18 |
+
)
|
19 |
+
|
20 |
+
def log_input_image(x, opts):
|
21 |
+
if opts.label_nc == 0:
|
22 |
+
return tensor2im(x)
|
23 |
+
elif opts.label_nc == 1:
|
24 |
+
return tensor2sketch(x)
|
25 |
+
else:
|
26 |
+
return tensor2map(x)
|
27 |
+
|
28 |
+
|
29 |
+
def tensor2im(var):
|
30 |
+
var = var.cpu().detach().transpose(0, 2).transpose(0, 1).numpy()
|
31 |
+
var = ((var + 1) / 2)
|
32 |
+
var[var < 0] = 0
|
33 |
+
var[var > 1] = 1
|
34 |
+
var = var * 255
|
35 |
+
return Image.fromarray(var.astype('uint8'))
|
36 |
+
|
37 |
+
def tensor2map(var):
|
38 |
+
mask = np.argmax(var.data.cpu().numpy(), axis=0)
|
39 |
+
print(np.unique(mask))
|
40 |
+
colors = get_colors()
|
41 |
+
mask_image = np.zeros(shape=(mask.shape[0], mask.shape[1], 3))
|
42 |
+
for class_idx in np.unique(mask):
|
43 |
+
mask_image[mask == class_idx] = colors[class_idx]
|
44 |
+
mask_image = mask_image.astype('uint8')
|
45 |
+
return Image.fromarray(mask_image)
|
46 |
+
|
47 |
+
def tensor2sketch(var):
|
48 |
+
im = var[0].cpu().detach().numpy()
|
49 |
+
im = cv2.cvtColor(im, cv2.COLOR_GRAY2BGR)
|
50 |
+
im = (im * 255).astype(np.uint8)
|
51 |
+
return Image.fromarray(im)
|
52 |
+
def get_colors():
|
53 |
+
# currently support up to 19 classes (for the celebs-hq-mask dataset)
|
54 |
+
colors = [[0, 0, 0], [204, 0, 0], [76, 153, 0], [204, 204, 0], [51, 51, 255], [204, 0, 204], [0, 255, 255],
|
55 |
+
[255, 204, 204], [102, 51, 0], [255, 0, 0], [102, 204, 0], [255, 255, 0], [0, 0, 153], [0, 0, 204],
|
56 |
+
[255, 51, 153], [0, 204, 204], [0, 51, 0], [255, 153, 51], [0, 204, 0]]
|
57 |
+
return colors
|
58 |
+
|
59 |
+
def sketch_recognition(img):
|
60 |
+
from_im = transfroms(Image.fromarray(img))
|
61 |
+
with torch.no_grad():
|
62 |
+
res = net(from_im.unsqueeze(0).to(device))
|
63 |
+
return tensor2im(res[0])
|
64 |
+
|
65 |
+
|
66 |
+
path = hf_hub_download('huggan/TediGAN_sketch', 'psp_celebs_sketch_to_face.pt')
|
67 |
+
ckpt = torch.load(path, map_location=device)
|
68 |
+
|
69 |
+
opts = ckpt['opts']
|
70 |
+
opts.update({"checkpoint_path": path})
|
71 |
+
opts = Namespace(**opts)
|
72 |
+
|
73 |
+
net = pSp(opts)
|
74 |
+
net.eval()
|
75 |
+
net.to(device)
|
76 |
+
|
77 |
+
iface = gr.Interface(
|
78 |
+
fn=sketch_recognition,
|
79 |
+
inputs=gr.inputs.Image(
|
80 |
+
shape=(256, 256),
|
81 |
+
image_mode="L",
|
82 |
+
invert_colors=False,
|
83 |
+
source="canvas",
|
84 |
+
tool="editor",
|
85 |
+
type="numpy",
|
86 |
+
label=None,
|
87 |
+
optional=False
|
88 |
+
),
|
89 |
+
outputs="image"
|
90 |
+
).launch()
|
91 |
+
iface.launch()
|
models/__init__.py
ADDED
File without changes
|
models/encoders/__init__.py
ADDED
File without changes
|
models/encoders/helpers.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
4 |
+
|
5 |
+
"""
|
6 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
class Flatten(Module):
|
11 |
+
def forward(self, input):
|
12 |
+
return input.view(input.size(0), -1)
|
13 |
+
|
14 |
+
|
15 |
+
def l2_norm(input, axis=1):
|
16 |
+
norm = torch.norm(input, 2, axis, True)
|
17 |
+
output = torch.div(input, norm)
|
18 |
+
return output
|
19 |
+
|
20 |
+
|
21 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
22 |
+
""" A named tuple describing a ResNet block. """
|
23 |
+
|
24 |
+
|
25 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
26 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
27 |
+
|
28 |
+
|
29 |
+
def get_blocks(num_layers):
|
30 |
+
if num_layers == 50:
|
31 |
+
blocks = [
|
32 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
33 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
34 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
35 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
36 |
+
]
|
37 |
+
elif num_layers == 100:
|
38 |
+
blocks = [
|
39 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
40 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
41 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
42 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
43 |
+
]
|
44 |
+
elif num_layers == 152:
|
45 |
+
blocks = [
|
46 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
47 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
48 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
49 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
50 |
+
]
|
51 |
+
else:
|
52 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
53 |
+
return blocks
|
54 |
+
|
55 |
+
|
56 |
+
class SEModule(Module):
|
57 |
+
def __init__(self, channels, reduction):
|
58 |
+
super(SEModule, self).__init__()
|
59 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
60 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
61 |
+
self.relu = ReLU(inplace=True)
|
62 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
63 |
+
self.sigmoid = Sigmoid()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
module_input = x
|
67 |
+
x = self.avg_pool(x)
|
68 |
+
x = self.fc1(x)
|
69 |
+
x = self.relu(x)
|
70 |
+
x = self.fc2(x)
|
71 |
+
x = self.sigmoid(x)
|
72 |
+
return module_input * x
|
73 |
+
|
74 |
+
|
75 |
+
class bottleneck_IR(Module):
|
76 |
+
def __init__(self, in_channel, depth, stride):
|
77 |
+
super(bottleneck_IR, self).__init__()
|
78 |
+
if in_channel == depth:
|
79 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
80 |
+
else:
|
81 |
+
self.shortcut_layer = Sequential(
|
82 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
83 |
+
BatchNorm2d(depth)
|
84 |
+
)
|
85 |
+
self.res_layer = Sequential(
|
86 |
+
BatchNorm2d(in_channel),
|
87 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
88 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
shortcut = self.shortcut_layer(x)
|
93 |
+
res = self.res_layer(x)
|
94 |
+
return res + shortcut
|
95 |
+
|
96 |
+
|
97 |
+
class bottleneck_IR_SE(Module):
|
98 |
+
def __init__(self, in_channel, depth, stride):
|
99 |
+
super(bottleneck_IR_SE, self).__init__()
|
100 |
+
if in_channel == depth:
|
101 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
102 |
+
else:
|
103 |
+
self.shortcut_layer = Sequential(
|
104 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
105 |
+
BatchNorm2d(depth)
|
106 |
+
)
|
107 |
+
self.res_layer = Sequential(
|
108 |
+
BatchNorm2d(in_channel),
|
109 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
110 |
+
PReLU(depth),
|
111 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
112 |
+
BatchNorm2d(depth),
|
113 |
+
SEModule(depth, 16)
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
shortcut = self.shortcut_layer(x)
|
118 |
+
res = self.res_layer(x)
|
119 |
+
return res + shortcut
|
models/encoders/model_irse.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
|
2 |
+
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
|
3 |
+
|
4 |
+
"""
|
5 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class Backbone(Module):
|
10 |
+
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
|
11 |
+
super(Backbone, self).__init__()
|
12 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
13 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
14 |
+
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
|
15 |
+
blocks = get_blocks(num_layers)
|
16 |
+
if mode == 'ir':
|
17 |
+
unit_module = bottleneck_IR
|
18 |
+
elif mode == 'ir_se':
|
19 |
+
unit_module = bottleneck_IR_SE
|
20 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
21 |
+
BatchNorm2d(64),
|
22 |
+
PReLU(64))
|
23 |
+
if input_size == 112:
|
24 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
25 |
+
Dropout(drop_ratio),
|
26 |
+
Flatten(),
|
27 |
+
Linear(512 * 7 * 7, 512),
|
28 |
+
BatchNorm1d(512, affine=affine))
|
29 |
+
else:
|
30 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
31 |
+
Dropout(drop_ratio),
|
32 |
+
Flatten(),
|
33 |
+
Linear(512 * 14 * 14, 512),
|
34 |
+
BatchNorm1d(512, affine=affine))
|
35 |
+
|
36 |
+
modules = []
|
37 |
+
for block in blocks:
|
38 |
+
for bottleneck in block:
|
39 |
+
modules.append(unit_module(bottleneck.in_channel,
|
40 |
+
bottleneck.depth,
|
41 |
+
bottleneck.stride))
|
42 |
+
self.body = Sequential(*modules)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.input_layer(x)
|
46 |
+
x = self.body(x)
|
47 |
+
x = self.output_layer(x)
|
48 |
+
return l2_norm(x)
|
49 |
+
|
50 |
+
|
51 |
+
def IR_50(input_size):
|
52 |
+
"""Constructs a ir-50 model."""
|
53 |
+
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
|
54 |
+
return model
|
55 |
+
|
56 |
+
|
57 |
+
def IR_101(input_size):
|
58 |
+
"""Constructs a ir-101 model."""
|
59 |
+
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
|
60 |
+
return model
|
61 |
+
|
62 |
+
|
63 |
+
def IR_152(input_size):
|
64 |
+
"""Constructs a ir-152 model."""
|
65 |
+
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
|
66 |
+
return model
|
67 |
+
|
68 |
+
|
69 |
+
def IR_SE_50(input_size):
|
70 |
+
"""Constructs a ir_se-50 model."""
|
71 |
+
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def IR_SE_101(input_size):
|
76 |
+
"""Constructs a ir_se-101 model."""
|
77 |
+
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
|
78 |
+
return model
|
79 |
+
|
80 |
+
|
81 |
+
def IR_SE_152(input_size):
|
82 |
+
"""Constructs a ir_se-152 model."""
|
83 |
+
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
|
84 |
+
return model
|
models/encoders/psp_encoders.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
6 |
+
|
7 |
+
from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
|
8 |
+
from models.stylegan2.model import EqualLinear
|
9 |
+
|
10 |
+
|
11 |
+
class GradualStyleBlock(Module):
|
12 |
+
def __init__(self, in_c, out_c, spatial):
|
13 |
+
super(GradualStyleBlock, self).__init__()
|
14 |
+
self.out_c = out_c
|
15 |
+
self.spatial = spatial
|
16 |
+
num_pools = int(np.log2(spatial))
|
17 |
+
modules = []
|
18 |
+
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
19 |
+
nn.LeakyReLU()]
|
20 |
+
for i in range(num_pools - 1):
|
21 |
+
modules += [
|
22 |
+
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
23 |
+
nn.LeakyReLU()
|
24 |
+
]
|
25 |
+
self.convs = nn.Sequential(*modules)
|
26 |
+
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.convs(x)
|
30 |
+
x = x.view(-1, self.out_c)
|
31 |
+
x = self.linear(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class GradualStyleEncoder(Module):
|
36 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
37 |
+
super(GradualStyleEncoder, self).__init__()
|
38 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
39 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
40 |
+
blocks = get_blocks(num_layers)
|
41 |
+
if mode == 'ir':
|
42 |
+
unit_module = bottleneck_IR
|
43 |
+
elif mode == 'ir_se':
|
44 |
+
unit_module = bottleneck_IR_SE
|
45 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
46 |
+
BatchNorm2d(64),
|
47 |
+
PReLU(64))
|
48 |
+
modules = []
|
49 |
+
for block in blocks:
|
50 |
+
for bottleneck in block:
|
51 |
+
modules.append(unit_module(bottleneck.in_channel,
|
52 |
+
bottleneck.depth,
|
53 |
+
bottleneck.stride))
|
54 |
+
self.body = Sequential(*modules)
|
55 |
+
|
56 |
+
self.styles = nn.ModuleList()
|
57 |
+
self.style_count = 18
|
58 |
+
self.coarse_ind = 3
|
59 |
+
self.middle_ind = 7
|
60 |
+
for i in range(self.style_count):
|
61 |
+
if i < self.coarse_ind:
|
62 |
+
style = GradualStyleBlock(512, 512, 16)
|
63 |
+
elif i < self.middle_ind:
|
64 |
+
style = GradualStyleBlock(512, 512, 32)
|
65 |
+
else:
|
66 |
+
style = GradualStyleBlock(512, 512, 64)
|
67 |
+
self.styles.append(style)
|
68 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
69 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
70 |
+
|
71 |
+
def _upsample_add(self, x, y):
|
72 |
+
'''Upsample and add two feature maps.
|
73 |
+
Args:
|
74 |
+
x: (Variable) top feature map to be upsampled.
|
75 |
+
y: (Variable) lateral feature map.
|
76 |
+
Returns:
|
77 |
+
(Variable) added feature map.
|
78 |
+
Note in PyTorch, when input size is odd, the upsampled feature map
|
79 |
+
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
80 |
+
maybe not equal to the lateral feature map size.
|
81 |
+
e.g.
|
82 |
+
original input size: [N,_,15,15] ->
|
83 |
+
conv2d feature map size: [N,_,8,8] ->
|
84 |
+
upsampled feature map size: [N,_,16,16]
|
85 |
+
So we choose bilinear upsample which supports arbitrary output sizes.
|
86 |
+
'''
|
87 |
+
_, _, H, W = y.size()
|
88 |
+
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.input_layer(x)
|
92 |
+
|
93 |
+
latents = []
|
94 |
+
modulelist = list(self.body._modules.values())
|
95 |
+
for i, l in enumerate(modulelist):
|
96 |
+
x = l(x)
|
97 |
+
if i == 6:
|
98 |
+
c1 = x
|
99 |
+
elif i == 20:
|
100 |
+
c2 = x
|
101 |
+
elif i == 23:
|
102 |
+
c3 = x
|
103 |
+
|
104 |
+
for j in range(self.coarse_ind):
|
105 |
+
latents.append(self.styles[j](c3))
|
106 |
+
|
107 |
+
p2 = self._upsample_add(c3, self.latlayer1(c2))
|
108 |
+
for j in range(self.coarse_ind, self.middle_ind):
|
109 |
+
latents.append(self.styles[j](p2))
|
110 |
+
|
111 |
+
p1 = self._upsample_add(p2, self.latlayer2(c1))
|
112 |
+
for j in range(self.middle_ind, self.style_count):
|
113 |
+
latents.append(self.styles[j](p1))
|
114 |
+
|
115 |
+
out = torch.stack(latents, dim=1)
|
116 |
+
return out
|
117 |
+
|
118 |
+
|
119 |
+
class BackboneEncoderUsingLastLayerIntoW(Module):
|
120 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
121 |
+
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
|
122 |
+
print('Using BackboneEncoderUsingLastLayerIntoW')
|
123 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
124 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
125 |
+
blocks = get_blocks(num_layers)
|
126 |
+
if mode == 'ir':
|
127 |
+
unit_module = bottleneck_IR
|
128 |
+
elif mode == 'ir_se':
|
129 |
+
unit_module = bottleneck_IR_SE
|
130 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
131 |
+
BatchNorm2d(64),
|
132 |
+
PReLU(64))
|
133 |
+
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
134 |
+
self.linear = EqualLinear(512, 512, lr_mul=1)
|
135 |
+
modules = []
|
136 |
+
for block in blocks:
|
137 |
+
for bottleneck in block:
|
138 |
+
modules.append(unit_module(bottleneck.in_channel,
|
139 |
+
bottleneck.depth,
|
140 |
+
bottleneck.stride))
|
141 |
+
self.body = Sequential(*modules)
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
x = self.input_layer(x)
|
145 |
+
x = self.body(x)
|
146 |
+
x = self.output_pool(x)
|
147 |
+
x = x.view(-1, 512)
|
148 |
+
x = self.linear(x)
|
149 |
+
return x
|
150 |
+
|
151 |
+
|
152 |
+
class BackboneEncoderUsingLastLayerIntoWPlus(Module):
|
153 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
154 |
+
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
|
155 |
+
print('Using BackboneEncoderUsingLastLayerIntoWPlus')
|
156 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
157 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
158 |
+
blocks = get_blocks(num_layers)
|
159 |
+
if mode == 'ir':
|
160 |
+
unit_module = bottleneck_IR
|
161 |
+
elif mode == 'ir_se':
|
162 |
+
unit_module = bottleneck_IR_SE
|
163 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
164 |
+
BatchNorm2d(64),
|
165 |
+
PReLU(64))
|
166 |
+
self.output_layer_2 = Sequential(BatchNorm2d(512),
|
167 |
+
torch.nn.AdaptiveAvgPool2d((7, 7)),
|
168 |
+
Flatten(),
|
169 |
+
Linear(512 * 7 * 7, 512))
|
170 |
+
self.linear = EqualLinear(512, 512 * 18, lr_mul=1)
|
171 |
+
modules = []
|
172 |
+
for block in blocks:
|
173 |
+
for bottleneck in block:
|
174 |
+
modules.append(unit_module(bottleneck.in_channel,
|
175 |
+
bottleneck.depth,
|
176 |
+
bottleneck.stride))
|
177 |
+
self.body = Sequential(*modules)
|
178 |
+
|
179 |
+
def forward(self, x):
|
180 |
+
x = self.input_layer(x)
|
181 |
+
x = self.body(x)
|
182 |
+
x = self.output_layer_2(x)
|
183 |
+
x = self.linear(x)
|
184 |
+
x = x.view(-1, 18, 512)
|
185 |
+
return x
|
models/psp.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file defines the core research contribution
|
3 |
+
"""
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from models.encoders import psp_encoders
|
8 |
+
from models.stylegan2.model import Generator
|
9 |
+
|
10 |
+
#from configs.paths_config import model_paths
|
11 |
+
|
12 |
+
|
13 |
+
def get_keys(d, name):
|
14 |
+
if 'state_dict' in d:
|
15 |
+
d = d['state_dict']
|
16 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
17 |
+
return d_filt
|
18 |
+
|
19 |
+
|
20 |
+
class pSp(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, opts):
|
23 |
+
super(pSp, self).__init__()
|
24 |
+
self.set_opts(opts)
|
25 |
+
# Define architecture
|
26 |
+
self.encoder = self.set_encoder()
|
27 |
+
self.decoder = Generator(1024, 512, 8)
|
28 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
29 |
+
# Load weights if needed
|
30 |
+
self.load_weights()
|
31 |
+
|
32 |
+
def set_encoder(self):
|
33 |
+
if self.opts.encoder_type == 'GradualStyleEncoder':
|
34 |
+
encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts)
|
35 |
+
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW':
|
36 |
+
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts)
|
37 |
+
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus':
|
38 |
+
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts)
|
39 |
+
else:
|
40 |
+
raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type))
|
41 |
+
return encoder
|
42 |
+
|
43 |
+
def load_weights(self):
|
44 |
+
print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path))
|
45 |
+
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
|
46 |
+
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True)
|
47 |
+
self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True)
|
48 |
+
self.__load_latent_avg(ckpt)
|
49 |
+
|
50 |
+
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
|
51 |
+
inject_latent=None, return_latents=False, alpha=None):
|
52 |
+
if input_code:
|
53 |
+
codes = x
|
54 |
+
else:
|
55 |
+
codes = self.encoder(x)
|
56 |
+
# normalize with respect to the center of an average face
|
57 |
+
if self.opts.start_from_latent_avg:
|
58 |
+
if self.opts.learn_in_w:
|
59 |
+
codes = codes + self.latent_avg.repeat(codes.shape[0], 1)
|
60 |
+
else:
|
61 |
+
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)
|
62 |
+
|
63 |
+
|
64 |
+
if latent_mask is not None:
|
65 |
+
for i in latent_mask:
|
66 |
+
if inject_latent is not None:
|
67 |
+
if alpha is not None:
|
68 |
+
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
|
69 |
+
else:
|
70 |
+
codes[:, i] = inject_latent[:, i]
|
71 |
+
else:
|
72 |
+
codes[:, i] = 0
|
73 |
+
|
74 |
+
input_is_latent = not input_code
|
75 |
+
images, result_latent = self.decoder([codes],
|
76 |
+
input_is_latent=input_is_latent,
|
77 |
+
randomize_noise=randomize_noise,
|
78 |
+
return_latents=return_latents)
|
79 |
+
|
80 |
+
if resize:
|
81 |
+
images = self.face_pool(images)
|
82 |
+
|
83 |
+
if return_latents:
|
84 |
+
return images, result_latent
|
85 |
+
else:
|
86 |
+
return images
|
87 |
+
|
88 |
+
def set_opts(self, opts):
|
89 |
+
self.opts = opts
|
90 |
+
|
91 |
+
def __load_latent_avg(self, ckpt, repeat=None):
|
92 |
+
if 'latent_avg' in ckpt:
|
93 |
+
self.latent_avg = ckpt['latent_avg'].to(self.opts.device)
|
94 |
+
if repeat is not None:
|
95 |
+
self.latent_avg = self.latent_avg.repeat(repeat, 1)
|
96 |
+
else:
|
97 |
+
self.latent_avg = None
|
models/stylegan2/__init__.py
ADDED
File without changes
|
models/stylegan2/model.py
ADDED
@@ -0,0 +1,673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import random
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import functional as F
|
6 |
+
|
7 |
+
from models.stylegan2.op import FusedLeakyReLU, fused_leaky_relu, upfirdn2d
|
8 |
+
|
9 |
+
|
10 |
+
class PixelNorm(nn.Module):
|
11 |
+
def __init__(self):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
def forward(self, input):
|
15 |
+
return input * torch.rsqrt(torch.mean(input ** 2, dim=1, keepdim=True) + 1e-8)
|
16 |
+
|
17 |
+
|
18 |
+
def make_kernel(k):
|
19 |
+
k = torch.tensor(k, dtype=torch.float32)
|
20 |
+
|
21 |
+
if k.ndim == 1:
|
22 |
+
k = k[None, :] * k[:, None]
|
23 |
+
|
24 |
+
k /= k.sum()
|
25 |
+
|
26 |
+
return k
|
27 |
+
|
28 |
+
|
29 |
+
class Upsample(nn.Module):
|
30 |
+
def __init__(self, kernel, factor=2):
|
31 |
+
super().__init__()
|
32 |
+
|
33 |
+
self.factor = factor
|
34 |
+
kernel = make_kernel(kernel) * (factor ** 2)
|
35 |
+
self.register_buffer('kernel', kernel)
|
36 |
+
|
37 |
+
p = kernel.shape[0] - factor
|
38 |
+
|
39 |
+
pad0 = (p + 1) // 2 + factor - 1
|
40 |
+
pad1 = p // 2
|
41 |
+
|
42 |
+
self.pad = (pad0, pad1)
|
43 |
+
|
44 |
+
def forward(self, input):
|
45 |
+
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=self.pad)
|
46 |
+
|
47 |
+
return out
|
48 |
+
|
49 |
+
|
50 |
+
class Downsample(nn.Module):
|
51 |
+
def __init__(self, kernel, factor=2):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.factor = factor
|
55 |
+
kernel = make_kernel(kernel)
|
56 |
+
self.register_buffer('kernel', kernel)
|
57 |
+
|
58 |
+
p = kernel.shape[0] - factor
|
59 |
+
|
60 |
+
pad0 = (p + 1) // 2
|
61 |
+
pad1 = p // 2
|
62 |
+
|
63 |
+
self.pad = (pad0, pad1)
|
64 |
+
|
65 |
+
def forward(self, input):
|
66 |
+
out = upfirdn2d(input, self.kernel, up=1, down=self.factor, pad=self.pad)
|
67 |
+
|
68 |
+
return out
|
69 |
+
|
70 |
+
|
71 |
+
class Blur(nn.Module):
|
72 |
+
def __init__(self, kernel, pad, upsample_factor=1):
|
73 |
+
super().__init__()
|
74 |
+
|
75 |
+
kernel = make_kernel(kernel)
|
76 |
+
|
77 |
+
if upsample_factor > 1:
|
78 |
+
kernel = kernel * (upsample_factor ** 2)
|
79 |
+
|
80 |
+
self.register_buffer('kernel', kernel)
|
81 |
+
|
82 |
+
self.pad = pad
|
83 |
+
|
84 |
+
def forward(self, input):
|
85 |
+
out = upfirdn2d(input, self.kernel, pad=self.pad)
|
86 |
+
|
87 |
+
return out
|
88 |
+
|
89 |
+
|
90 |
+
class EqualConv2d(nn.Module):
|
91 |
+
def __init__(
|
92 |
+
self, in_channel, out_channel, kernel_size, stride=1, padding=0, bias=True
|
93 |
+
):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.weight = nn.Parameter(
|
97 |
+
torch.randn(out_channel, in_channel, kernel_size, kernel_size)
|
98 |
+
)
|
99 |
+
self.scale = 1 / math.sqrt(in_channel * kernel_size ** 2)
|
100 |
+
|
101 |
+
self.stride = stride
|
102 |
+
self.padding = padding
|
103 |
+
|
104 |
+
if bias:
|
105 |
+
self.bias = nn.Parameter(torch.zeros(out_channel))
|
106 |
+
|
107 |
+
else:
|
108 |
+
self.bias = None
|
109 |
+
|
110 |
+
def forward(self, input):
|
111 |
+
out = F.conv2d(
|
112 |
+
input,
|
113 |
+
self.weight * self.scale,
|
114 |
+
bias=self.bias,
|
115 |
+
stride=self.stride,
|
116 |
+
padding=self.padding,
|
117 |
+
)
|
118 |
+
|
119 |
+
return out
|
120 |
+
|
121 |
+
def __repr__(self):
|
122 |
+
return (
|
123 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]},'
|
124 |
+
f' {self.weight.shape[2]}, stride={self.stride}, padding={self.padding})'
|
125 |
+
)
|
126 |
+
|
127 |
+
|
128 |
+
class EqualLinear(nn.Module):
|
129 |
+
def __init__(
|
130 |
+
self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1, activation=None
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
|
135 |
+
|
136 |
+
if bias:
|
137 |
+
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
|
138 |
+
|
139 |
+
else:
|
140 |
+
self.bias = None
|
141 |
+
|
142 |
+
self.activation = activation
|
143 |
+
|
144 |
+
self.scale = (1 / math.sqrt(in_dim)) * lr_mul
|
145 |
+
self.lr_mul = lr_mul
|
146 |
+
|
147 |
+
def forward(self, input):
|
148 |
+
if self.activation:
|
149 |
+
out = F.linear(input, self.weight * self.scale)
|
150 |
+
out = fused_leaky_relu(out, self.bias * self.lr_mul)
|
151 |
+
|
152 |
+
else:
|
153 |
+
out = F.linear(
|
154 |
+
input, self.weight * self.scale, bias=self.bias * self.lr_mul
|
155 |
+
)
|
156 |
+
|
157 |
+
return out
|
158 |
+
|
159 |
+
def __repr__(self):
|
160 |
+
return (
|
161 |
+
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
class ScaledLeakyReLU(nn.Module):
|
166 |
+
def __init__(self, negative_slope=0.2):
|
167 |
+
super().__init__()
|
168 |
+
|
169 |
+
self.negative_slope = negative_slope
|
170 |
+
|
171 |
+
def forward(self, input):
|
172 |
+
out = F.leaky_relu(input, negative_slope=self.negative_slope)
|
173 |
+
|
174 |
+
return out * math.sqrt(2)
|
175 |
+
|
176 |
+
|
177 |
+
class ModulatedConv2d(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
in_channel,
|
181 |
+
out_channel,
|
182 |
+
kernel_size,
|
183 |
+
style_dim,
|
184 |
+
demodulate=True,
|
185 |
+
upsample=False,
|
186 |
+
downsample=False,
|
187 |
+
blur_kernel=[1, 3, 3, 1],
|
188 |
+
):
|
189 |
+
super().__init__()
|
190 |
+
|
191 |
+
self.eps = 1e-8
|
192 |
+
self.kernel_size = kernel_size
|
193 |
+
self.in_channel = in_channel
|
194 |
+
self.out_channel = out_channel
|
195 |
+
self.upsample = upsample
|
196 |
+
self.downsample = downsample
|
197 |
+
|
198 |
+
if upsample:
|
199 |
+
factor = 2
|
200 |
+
p = (len(blur_kernel) - factor) - (kernel_size - 1)
|
201 |
+
pad0 = (p + 1) // 2 + factor - 1
|
202 |
+
pad1 = p // 2 + 1
|
203 |
+
|
204 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor=factor)
|
205 |
+
|
206 |
+
if downsample:
|
207 |
+
factor = 2
|
208 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
209 |
+
pad0 = (p + 1) // 2
|
210 |
+
pad1 = p // 2
|
211 |
+
|
212 |
+
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
|
213 |
+
|
214 |
+
fan_in = in_channel * kernel_size ** 2
|
215 |
+
self.scale = 1 / math.sqrt(fan_in)
|
216 |
+
self.padding = kernel_size // 2
|
217 |
+
|
218 |
+
self.weight = nn.Parameter(
|
219 |
+
torch.randn(1, out_channel, in_channel, kernel_size, kernel_size)
|
220 |
+
)
|
221 |
+
|
222 |
+
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
|
223 |
+
|
224 |
+
self.demodulate = demodulate
|
225 |
+
|
226 |
+
def __repr__(self):
|
227 |
+
return (
|
228 |
+
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, '
|
229 |
+
f'upsample={self.upsample}, downsample={self.downsample})'
|
230 |
+
)
|
231 |
+
|
232 |
+
def forward(self, input, style):
|
233 |
+
batch, in_channel, height, width = input.shape
|
234 |
+
|
235 |
+
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
|
236 |
+
weight = self.scale * self.weight * style
|
237 |
+
|
238 |
+
if self.demodulate:
|
239 |
+
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
|
240 |
+
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
|
241 |
+
|
242 |
+
weight = weight.view(
|
243 |
+
batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
244 |
+
)
|
245 |
+
|
246 |
+
if self.upsample:
|
247 |
+
input = input.view(1, batch * in_channel, height, width)
|
248 |
+
weight = weight.view(
|
249 |
+
batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size
|
250 |
+
)
|
251 |
+
weight = weight.transpose(1, 2).reshape(
|
252 |
+
batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
|
253 |
+
)
|
254 |
+
out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
|
255 |
+
_, _, height, width = out.shape
|
256 |
+
out = out.view(batch, self.out_channel, height, width)
|
257 |
+
out = self.blur(out)
|
258 |
+
|
259 |
+
elif self.downsample:
|
260 |
+
input = self.blur(input)
|
261 |
+
_, _, height, width = input.shape
|
262 |
+
input = input.view(1, batch * in_channel, height, width)
|
263 |
+
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
|
264 |
+
_, _, height, width = out.shape
|
265 |
+
out = out.view(batch, self.out_channel, height, width)
|
266 |
+
|
267 |
+
else:
|
268 |
+
input = input.view(1, batch * in_channel, height, width)
|
269 |
+
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
|
270 |
+
_, _, height, width = out.shape
|
271 |
+
out = out.view(batch, self.out_channel, height, width)
|
272 |
+
|
273 |
+
return out
|
274 |
+
|
275 |
+
|
276 |
+
class NoiseInjection(nn.Module):
|
277 |
+
def __init__(self):
|
278 |
+
super().__init__()
|
279 |
+
|
280 |
+
self.weight = nn.Parameter(torch.zeros(1))
|
281 |
+
|
282 |
+
def forward(self, image, noise=None):
|
283 |
+
if noise is None:
|
284 |
+
batch, _, height, width = image.shape
|
285 |
+
noise = image.new_empty(batch, 1, height, width).normal_()
|
286 |
+
|
287 |
+
return image + self.weight * noise
|
288 |
+
|
289 |
+
|
290 |
+
class ConstantInput(nn.Module):
|
291 |
+
def __init__(self, channel, size=4):
|
292 |
+
super().__init__()
|
293 |
+
|
294 |
+
self.input = nn.Parameter(torch.randn(1, channel, size, size))
|
295 |
+
|
296 |
+
def forward(self, input):
|
297 |
+
batch = input.shape[0]
|
298 |
+
out = self.input.repeat(batch, 1, 1, 1)
|
299 |
+
|
300 |
+
return out
|
301 |
+
|
302 |
+
|
303 |
+
class StyledConv(nn.Module):
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
in_channel,
|
307 |
+
out_channel,
|
308 |
+
kernel_size,
|
309 |
+
style_dim,
|
310 |
+
upsample=False,
|
311 |
+
blur_kernel=[1, 3, 3, 1],
|
312 |
+
demodulate=True,
|
313 |
+
):
|
314 |
+
super().__init__()
|
315 |
+
|
316 |
+
self.conv = ModulatedConv2d(
|
317 |
+
in_channel,
|
318 |
+
out_channel,
|
319 |
+
kernel_size,
|
320 |
+
style_dim,
|
321 |
+
upsample=upsample,
|
322 |
+
blur_kernel=blur_kernel,
|
323 |
+
demodulate=demodulate,
|
324 |
+
)
|
325 |
+
|
326 |
+
self.noise = NoiseInjection()
|
327 |
+
# self.bias = nn.Parameter(torch.zeros(1, out_channel, 1, 1))
|
328 |
+
# self.activate = ScaledLeakyReLU(0.2)
|
329 |
+
self.activate = FusedLeakyReLU(out_channel)
|
330 |
+
|
331 |
+
def forward(self, input, style, noise=None):
|
332 |
+
out = self.conv(input, style)
|
333 |
+
out = self.noise(out, noise=noise)
|
334 |
+
# out = out + self.bias
|
335 |
+
out = self.activate(out)
|
336 |
+
|
337 |
+
return out
|
338 |
+
|
339 |
+
|
340 |
+
class ToRGB(nn.Module):
|
341 |
+
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1, 3, 3, 1]):
|
342 |
+
super().__init__()
|
343 |
+
|
344 |
+
if upsample:
|
345 |
+
self.upsample = Upsample(blur_kernel)
|
346 |
+
|
347 |
+
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate=False)
|
348 |
+
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
|
349 |
+
|
350 |
+
def forward(self, input, style, skip=None):
|
351 |
+
out = self.conv(input, style)
|
352 |
+
out = out + self.bias
|
353 |
+
|
354 |
+
if skip is not None:
|
355 |
+
skip = self.upsample(skip)
|
356 |
+
|
357 |
+
out = out + skip
|
358 |
+
|
359 |
+
return out
|
360 |
+
|
361 |
+
|
362 |
+
class Generator(nn.Module):
|
363 |
+
def __init__(
|
364 |
+
self,
|
365 |
+
size,
|
366 |
+
style_dim,
|
367 |
+
n_mlp,
|
368 |
+
channel_multiplier=2,
|
369 |
+
blur_kernel=[1, 3, 3, 1],
|
370 |
+
lr_mlp=0.01,
|
371 |
+
):
|
372 |
+
super().__init__()
|
373 |
+
|
374 |
+
self.size = size
|
375 |
+
|
376 |
+
self.style_dim = style_dim
|
377 |
+
|
378 |
+
layers = [PixelNorm()]
|
379 |
+
|
380 |
+
for i in range(n_mlp):
|
381 |
+
layers.append(
|
382 |
+
EqualLinear(
|
383 |
+
style_dim, style_dim, lr_mul=lr_mlp, activation='fused_lrelu'
|
384 |
+
)
|
385 |
+
)
|
386 |
+
|
387 |
+
self.style = nn.Sequential(*layers)
|
388 |
+
|
389 |
+
self.channels = {
|
390 |
+
4: 512,
|
391 |
+
8: 512,
|
392 |
+
16: 512,
|
393 |
+
32: 512,
|
394 |
+
64: 256 * channel_multiplier,
|
395 |
+
128: 128 * channel_multiplier,
|
396 |
+
256: 64 * channel_multiplier,
|
397 |
+
512: 32 * channel_multiplier,
|
398 |
+
1024: 16 * channel_multiplier,
|
399 |
+
}
|
400 |
+
|
401 |
+
self.input = ConstantInput(self.channels[4])
|
402 |
+
self.conv1 = StyledConv(
|
403 |
+
self.channels[4], self.channels[4], 3, style_dim, blur_kernel=blur_kernel
|
404 |
+
)
|
405 |
+
self.to_rgb1 = ToRGB(self.channels[4], style_dim, upsample=False)
|
406 |
+
|
407 |
+
self.log_size = int(math.log(size, 2))
|
408 |
+
self.num_layers = (self.log_size - 2) * 2 + 1
|
409 |
+
|
410 |
+
self.convs = nn.ModuleList()
|
411 |
+
self.upsamples = nn.ModuleList()
|
412 |
+
self.to_rgbs = nn.ModuleList()
|
413 |
+
self.noises = nn.Module()
|
414 |
+
|
415 |
+
in_channel = self.channels[4]
|
416 |
+
|
417 |
+
for layer_idx in range(self.num_layers):
|
418 |
+
res = (layer_idx + 5) // 2
|
419 |
+
shape = [1, 1, 2 ** res, 2 ** res]
|
420 |
+
self.noises.register_buffer(f'noise_{layer_idx}', torch.randn(*shape))
|
421 |
+
|
422 |
+
for i in range(3, self.log_size + 1):
|
423 |
+
out_channel = self.channels[2 ** i]
|
424 |
+
|
425 |
+
self.convs.append(
|
426 |
+
StyledConv(
|
427 |
+
in_channel,
|
428 |
+
out_channel,
|
429 |
+
3,
|
430 |
+
style_dim,
|
431 |
+
upsample=True,
|
432 |
+
blur_kernel=blur_kernel,
|
433 |
+
)
|
434 |
+
)
|
435 |
+
|
436 |
+
self.convs.append(
|
437 |
+
StyledConv(
|
438 |
+
out_channel, out_channel, 3, style_dim, blur_kernel=blur_kernel
|
439 |
+
)
|
440 |
+
)
|
441 |
+
|
442 |
+
self.to_rgbs.append(ToRGB(out_channel, style_dim))
|
443 |
+
|
444 |
+
in_channel = out_channel
|
445 |
+
|
446 |
+
self.n_latent = self.log_size * 2 - 2
|
447 |
+
|
448 |
+
def make_noise(self):
|
449 |
+
device = self.input.input.device
|
450 |
+
|
451 |
+
noises = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=device)]
|
452 |
+
|
453 |
+
for i in range(3, self.log_size + 1):
|
454 |
+
for _ in range(2):
|
455 |
+
noises.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=device))
|
456 |
+
|
457 |
+
return noises
|
458 |
+
|
459 |
+
def mean_latent(self, n_latent):
|
460 |
+
latent_in = torch.randn(
|
461 |
+
n_latent, self.style_dim, device=self.input.input.device
|
462 |
+
)
|
463 |
+
latent = self.style(latent_in).mean(0, keepdim=True)
|
464 |
+
|
465 |
+
return latent
|
466 |
+
|
467 |
+
def get_latent(self, input):
|
468 |
+
return self.style(input)
|
469 |
+
|
470 |
+
def forward(
|
471 |
+
self,
|
472 |
+
styles,
|
473 |
+
return_latents=False,
|
474 |
+
return_features=False,
|
475 |
+
inject_index=None,
|
476 |
+
truncation=1,
|
477 |
+
truncation_latent=None,
|
478 |
+
input_is_latent=False,
|
479 |
+
noise=None,
|
480 |
+
randomize_noise=True,
|
481 |
+
):
|
482 |
+
if not input_is_latent:
|
483 |
+
styles = [self.style(s) for s in styles]
|
484 |
+
|
485 |
+
if noise is None:
|
486 |
+
if randomize_noise:
|
487 |
+
noise = [None] * self.num_layers
|
488 |
+
else:
|
489 |
+
noise = [
|
490 |
+
getattr(self.noises, f'noise_{i}') for i in range(self.num_layers)
|
491 |
+
]
|
492 |
+
|
493 |
+
if truncation < 1:
|
494 |
+
style_t = []
|
495 |
+
|
496 |
+
for style in styles:
|
497 |
+
style_t.append(
|
498 |
+
truncation_latent + truncation * (style - truncation_latent)
|
499 |
+
)
|
500 |
+
|
501 |
+
styles = style_t
|
502 |
+
|
503 |
+
if len(styles) < 2:
|
504 |
+
inject_index = self.n_latent
|
505 |
+
|
506 |
+
if styles[0].ndim < 3:
|
507 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
508 |
+
else:
|
509 |
+
latent = styles[0]
|
510 |
+
|
511 |
+
else:
|
512 |
+
if inject_index is None:
|
513 |
+
inject_index = random.randint(1, self.n_latent - 1)
|
514 |
+
|
515 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
516 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
|
517 |
+
|
518 |
+
latent = torch.cat([latent, latent2], 1)
|
519 |
+
|
520 |
+
out = self.input(latent)
|
521 |
+
out = self.conv1(out, latent[:, 0], noise=noise[0])
|
522 |
+
|
523 |
+
skip = self.to_rgb1(out, latent[:, 1])
|
524 |
+
|
525 |
+
i = 1
|
526 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
527 |
+
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
|
528 |
+
):
|
529 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
530 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
531 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
532 |
+
|
533 |
+
i += 2
|
534 |
+
|
535 |
+
image = skip
|
536 |
+
|
537 |
+
if return_latents:
|
538 |
+
return image, latent
|
539 |
+
elif return_features:
|
540 |
+
return image, out
|
541 |
+
else:
|
542 |
+
return image, None
|
543 |
+
|
544 |
+
|
545 |
+
class ConvLayer(nn.Sequential):
|
546 |
+
def __init__(
|
547 |
+
self,
|
548 |
+
in_channel,
|
549 |
+
out_channel,
|
550 |
+
kernel_size,
|
551 |
+
downsample=False,
|
552 |
+
blur_kernel=[1, 3, 3, 1],
|
553 |
+
bias=True,
|
554 |
+
activate=True,
|
555 |
+
):
|
556 |
+
layers = []
|
557 |
+
|
558 |
+
if downsample:
|
559 |
+
factor = 2
|
560 |
+
p = (len(blur_kernel) - factor) + (kernel_size - 1)
|
561 |
+
pad0 = (p + 1) // 2
|
562 |
+
pad1 = p // 2
|
563 |
+
|
564 |
+
layers.append(Blur(blur_kernel, pad=(pad0, pad1)))
|
565 |
+
|
566 |
+
stride = 2
|
567 |
+
self.padding = 0
|
568 |
+
|
569 |
+
else:
|
570 |
+
stride = 1
|
571 |
+
self.padding = kernel_size // 2
|
572 |
+
|
573 |
+
layers.append(
|
574 |
+
EqualConv2d(
|
575 |
+
in_channel,
|
576 |
+
out_channel,
|
577 |
+
kernel_size,
|
578 |
+
padding=self.padding,
|
579 |
+
stride=stride,
|
580 |
+
bias=bias and not activate,
|
581 |
+
)
|
582 |
+
)
|
583 |
+
|
584 |
+
if activate:
|
585 |
+
if bias:
|
586 |
+
layers.append(FusedLeakyReLU(out_channel))
|
587 |
+
|
588 |
+
else:
|
589 |
+
layers.append(ScaledLeakyReLU(0.2))
|
590 |
+
|
591 |
+
super().__init__(*layers)
|
592 |
+
|
593 |
+
|
594 |
+
class ResBlock(nn.Module):
|
595 |
+
def __init__(self, in_channel, out_channel, blur_kernel=[1, 3, 3, 1]):
|
596 |
+
super().__init__()
|
597 |
+
|
598 |
+
self.conv1 = ConvLayer(in_channel, in_channel, 3)
|
599 |
+
self.conv2 = ConvLayer(in_channel, out_channel, 3, downsample=True)
|
600 |
+
|
601 |
+
self.skip = ConvLayer(
|
602 |
+
in_channel, out_channel, 1, downsample=True, activate=False, bias=False
|
603 |
+
)
|
604 |
+
|
605 |
+
def forward(self, input):
|
606 |
+
out = self.conv1(input)
|
607 |
+
out = self.conv2(out)
|
608 |
+
|
609 |
+
skip = self.skip(input)
|
610 |
+
out = (out + skip) / math.sqrt(2)
|
611 |
+
|
612 |
+
return out
|
613 |
+
|
614 |
+
|
615 |
+
class Discriminator(nn.Module):
|
616 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1]):
|
617 |
+
super().__init__()
|
618 |
+
|
619 |
+
channels = {
|
620 |
+
4: 512,
|
621 |
+
8: 512,
|
622 |
+
16: 512,
|
623 |
+
32: 512,
|
624 |
+
64: 256 * channel_multiplier,
|
625 |
+
128: 128 * channel_multiplier,
|
626 |
+
256: 64 * channel_multiplier,
|
627 |
+
512: 32 * channel_multiplier,
|
628 |
+
1024: 16 * channel_multiplier,
|
629 |
+
}
|
630 |
+
|
631 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
632 |
+
|
633 |
+
log_size = int(math.log(size, 2))
|
634 |
+
|
635 |
+
in_channel = channels[size]
|
636 |
+
|
637 |
+
for i in range(log_size, 2, -1):
|
638 |
+
out_channel = channels[2 ** (i - 1)]
|
639 |
+
|
640 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
641 |
+
|
642 |
+
in_channel = out_channel
|
643 |
+
|
644 |
+
self.convs = nn.Sequential(*convs)
|
645 |
+
|
646 |
+
self.stddev_group = 4
|
647 |
+
self.stddev_feat = 1
|
648 |
+
|
649 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
650 |
+
self.final_linear = nn.Sequential(
|
651 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation='fused_lrelu'),
|
652 |
+
EqualLinear(channels[4], 1),
|
653 |
+
)
|
654 |
+
|
655 |
+
def forward(self, input):
|
656 |
+
out = self.convs(input)
|
657 |
+
|
658 |
+
batch, channel, height, width = out.shape
|
659 |
+
group = min(batch, self.stddev_group)
|
660 |
+
stddev = out.view(
|
661 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
662 |
+
)
|
663 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
664 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
665 |
+
stddev = stddev.repeat(group, 1, height, width)
|
666 |
+
out = torch.cat([out, stddev], 1)
|
667 |
+
|
668 |
+
out = self.final_conv(out)
|
669 |
+
|
670 |
+
out = out.view(batch, -1)
|
671 |
+
out = self.final_linear(out)
|
672 |
+
|
673 |
+
return out
|
models/stylegan2/op/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .fused_act import FusedLeakyReLU, fused_leaky_relu
|
2 |
+
from .upfirdn2d import upfirdn2d
|
models/stylegan2/op/fused_act.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from torch.autograd import Function
|
6 |
+
from torch.utils.cpp_extension import load
|
7 |
+
|
8 |
+
module_path = os.path.dirname(__file__)
|
9 |
+
fused = load(
|
10 |
+
'fused',
|
11 |
+
sources=[
|
12 |
+
os.path.join(module_path, 'fused_bias_act.cpp'),
|
13 |
+
os.path.join(module_path, 'fused_bias_act_kernel.cu'),
|
14 |
+
],
|
15 |
+
)
|
16 |
+
|
17 |
+
|
18 |
+
class FusedLeakyReLUFunctionBackward(Function):
|
19 |
+
@staticmethod
|
20 |
+
def forward(ctx, grad_output, out, negative_slope, scale):
|
21 |
+
ctx.save_for_backward(out)
|
22 |
+
ctx.negative_slope = negative_slope
|
23 |
+
ctx.scale = scale
|
24 |
+
|
25 |
+
empty = grad_output.new_empty(0)
|
26 |
+
|
27 |
+
grad_input = fused.fused_bias_act(
|
28 |
+
grad_output, empty, out, 3, 1, negative_slope, scale
|
29 |
+
)
|
30 |
+
|
31 |
+
dim = [0]
|
32 |
+
|
33 |
+
if grad_input.ndim > 2:
|
34 |
+
dim += list(range(2, grad_input.ndim))
|
35 |
+
|
36 |
+
grad_bias = grad_input.sum(dim).detach()
|
37 |
+
|
38 |
+
return grad_input, grad_bias
|
39 |
+
|
40 |
+
@staticmethod
|
41 |
+
def backward(ctx, gradgrad_input, gradgrad_bias):
|
42 |
+
out, = ctx.saved_tensors
|
43 |
+
gradgrad_out = fused.fused_bias_act(
|
44 |
+
gradgrad_input, gradgrad_bias, out, 3, 1, ctx.negative_slope, ctx.scale
|
45 |
+
)
|
46 |
+
|
47 |
+
return gradgrad_out, None, None, None
|
48 |
+
|
49 |
+
|
50 |
+
class FusedLeakyReLUFunction(Function):
|
51 |
+
@staticmethod
|
52 |
+
def forward(ctx, input, bias, negative_slope, scale):
|
53 |
+
empty = input.new_empty(0)
|
54 |
+
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope, scale)
|
55 |
+
ctx.save_for_backward(out)
|
56 |
+
ctx.negative_slope = negative_slope
|
57 |
+
ctx.scale = scale
|
58 |
+
|
59 |
+
return out
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def backward(ctx, grad_output):
|
63 |
+
out, = ctx.saved_tensors
|
64 |
+
|
65 |
+
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
|
66 |
+
grad_output, out, ctx.negative_slope, ctx.scale
|
67 |
+
)
|
68 |
+
|
69 |
+
return grad_input, grad_bias, None, None
|
70 |
+
|
71 |
+
|
72 |
+
class FusedLeakyReLU(nn.Module):
|
73 |
+
def __init__(self, channel, negative_slope=0.2, scale=2 ** 0.5):
|
74 |
+
super().__init__()
|
75 |
+
|
76 |
+
self.bias = nn.Parameter(torch.zeros(channel))
|
77 |
+
self.negative_slope = negative_slope
|
78 |
+
self.scale = scale
|
79 |
+
|
80 |
+
def forward(self, input):
|
81 |
+
return fused_leaky_relu(input, self.bias, self.negative_slope, self.scale)
|
82 |
+
|
83 |
+
|
84 |
+
def fused_leaky_relu(input, bias, negative_slope=0.2, scale=2 ** 0.5):
|
85 |
+
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
|
models/stylegan2/op/fused_bias_act.cpp
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
5 |
+
int act, int grad, float alpha, float scale);
|
6 |
+
|
7 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
8 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
9 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
10 |
+
|
11 |
+
torch::Tensor fused_bias_act(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
12 |
+
int act, int grad, float alpha, float scale) {
|
13 |
+
CHECK_CUDA(input);
|
14 |
+
CHECK_CUDA(bias);
|
15 |
+
|
16 |
+
return fused_bias_act_op(input, bias, refer, act, grad, alpha, scale);
|
17 |
+
}
|
18 |
+
|
19 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
20 |
+
m.def("fused_bias_act", &fused_bias_act, "fused bias act (CUDA)");
|
21 |
+
}
|
models/stylegan2/op/fused_bias_act_kernel.cu
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
static __global__ void fused_bias_act_kernel(scalar_t* out, const scalar_t* p_x, const scalar_t* p_b, const scalar_t* p_ref,
|
20 |
+
int act, int grad, scalar_t alpha, scalar_t scale, int loop_x, int size_x, int step_b, int size_b, int use_bias, int use_ref) {
|
21 |
+
int xi = blockIdx.x * loop_x * blockDim.x + threadIdx.x;
|
22 |
+
|
23 |
+
scalar_t zero = 0.0;
|
24 |
+
|
25 |
+
for (int loop_idx = 0; loop_idx < loop_x && xi < size_x; loop_idx++, xi += blockDim.x) {
|
26 |
+
scalar_t x = p_x[xi];
|
27 |
+
|
28 |
+
if (use_bias) {
|
29 |
+
x += p_b[(xi / step_b) % size_b];
|
30 |
+
}
|
31 |
+
|
32 |
+
scalar_t ref = use_ref ? p_ref[xi] : zero;
|
33 |
+
|
34 |
+
scalar_t y;
|
35 |
+
|
36 |
+
switch (act * 10 + grad) {
|
37 |
+
default:
|
38 |
+
case 10: y = x; break;
|
39 |
+
case 11: y = x; break;
|
40 |
+
case 12: y = 0.0; break;
|
41 |
+
|
42 |
+
case 30: y = (x > 0.0) ? x : x * alpha; break;
|
43 |
+
case 31: y = (ref > 0.0) ? x : x * alpha; break;
|
44 |
+
case 32: y = 0.0; break;
|
45 |
+
}
|
46 |
+
|
47 |
+
out[xi] = y * scale;
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
torch::Tensor fused_bias_act_op(const torch::Tensor& input, const torch::Tensor& bias, const torch::Tensor& refer,
|
53 |
+
int act, int grad, float alpha, float scale) {
|
54 |
+
int curDevice = -1;
|
55 |
+
cudaGetDevice(&curDevice);
|
56 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
57 |
+
|
58 |
+
auto x = input.contiguous();
|
59 |
+
auto b = bias.contiguous();
|
60 |
+
auto ref = refer.contiguous();
|
61 |
+
|
62 |
+
int use_bias = b.numel() ? 1 : 0;
|
63 |
+
int use_ref = ref.numel() ? 1 : 0;
|
64 |
+
|
65 |
+
int size_x = x.numel();
|
66 |
+
int size_b = b.numel();
|
67 |
+
int step_b = 1;
|
68 |
+
|
69 |
+
for (int i = 1 + 1; i < x.dim(); i++) {
|
70 |
+
step_b *= x.size(i);
|
71 |
+
}
|
72 |
+
|
73 |
+
int loop_x = 4;
|
74 |
+
int block_size = 4 * 32;
|
75 |
+
int grid_size = (size_x - 1) / (loop_x * block_size) + 1;
|
76 |
+
|
77 |
+
auto y = torch::empty_like(x);
|
78 |
+
|
79 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "fused_bias_act_kernel", [&] {
|
80 |
+
fused_bias_act_kernel<scalar_t><<<grid_size, block_size, 0, stream>>>(
|
81 |
+
y.data_ptr<scalar_t>(),
|
82 |
+
x.data_ptr<scalar_t>(),
|
83 |
+
b.data_ptr<scalar_t>(),
|
84 |
+
ref.data_ptr<scalar_t>(),
|
85 |
+
act,
|
86 |
+
grad,
|
87 |
+
alpha,
|
88 |
+
scale,
|
89 |
+
loop_x,
|
90 |
+
size_x,
|
91 |
+
step_b,
|
92 |
+
size_b,
|
93 |
+
use_bias,
|
94 |
+
use_ref
|
95 |
+
);
|
96 |
+
});
|
97 |
+
|
98 |
+
return y;
|
99 |
+
}
|
models/stylegan2/op/upfirdn2d.cpp
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
|
3 |
+
|
4 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
5 |
+
int up_x, int up_y, int down_x, int down_y,
|
6 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1);
|
7 |
+
|
8 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
9 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
10 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
11 |
+
|
12 |
+
torch::Tensor upfirdn2d(const torch::Tensor& input, const torch::Tensor& kernel,
|
13 |
+
int up_x, int up_y, int down_x, int down_y,
|
14 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
15 |
+
CHECK_CUDA(input);
|
16 |
+
CHECK_CUDA(kernel);
|
17 |
+
|
18 |
+
return upfirdn2d_op(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1);
|
19 |
+
}
|
20 |
+
|
21 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
22 |
+
m.def("upfirdn2d", &upfirdn2d, "upfirdn2d (CUDA)");
|
23 |
+
}
|
models/stylegan2/op/upfirdn2d.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch.autograd import Function
|
5 |
+
from torch.utils.cpp_extension import load
|
6 |
+
|
7 |
+
module_path = os.path.dirname(__file__)
|
8 |
+
upfirdn2d_op = load(
|
9 |
+
'upfirdn2d',
|
10 |
+
sources=[
|
11 |
+
os.path.join(module_path, 'upfirdn2d.cpp'),
|
12 |
+
os.path.join(module_path, 'upfirdn2d_kernel.cu'),
|
13 |
+
],
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
class UpFirDn2dBackward(Function):
|
18 |
+
@staticmethod
|
19 |
+
def forward(
|
20 |
+
ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad, in_size, out_size
|
21 |
+
):
|
22 |
+
up_x, up_y = up
|
23 |
+
down_x, down_y = down
|
24 |
+
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
|
25 |
+
|
26 |
+
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
|
27 |
+
|
28 |
+
grad_input = upfirdn2d_op.upfirdn2d(
|
29 |
+
grad_output,
|
30 |
+
grad_kernel,
|
31 |
+
down_x,
|
32 |
+
down_y,
|
33 |
+
up_x,
|
34 |
+
up_y,
|
35 |
+
g_pad_x0,
|
36 |
+
g_pad_x1,
|
37 |
+
g_pad_y0,
|
38 |
+
g_pad_y1,
|
39 |
+
)
|
40 |
+
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2], in_size[3])
|
41 |
+
|
42 |
+
ctx.save_for_backward(kernel)
|
43 |
+
|
44 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
45 |
+
|
46 |
+
ctx.up_x = up_x
|
47 |
+
ctx.up_y = up_y
|
48 |
+
ctx.down_x = down_x
|
49 |
+
ctx.down_y = down_y
|
50 |
+
ctx.pad_x0 = pad_x0
|
51 |
+
ctx.pad_x1 = pad_x1
|
52 |
+
ctx.pad_y0 = pad_y0
|
53 |
+
ctx.pad_y1 = pad_y1
|
54 |
+
ctx.in_size = in_size
|
55 |
+
ctx.out_size = out_size
|
56 |
+
|
57 |
+
return grad_input
|
58 |
+
|
59 |
+
@staticmethod
|
60 |
+
def backward(ctx, gradgrad_input):
|
61 |
+
kernel, = ctx.saved_tensors
|
62 |
+
|
63 |
+
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.in_size[3], 1)
|
64 |
+
|
65 |
+
gradgrad_out = upfirdn2d_op.upfirdn2d(
|
66 |
+
gradgrad_input,
|
67 |
+
kernel,
|
68 |
+
ctx.up_x,
|
69 |
+
ctx.up_y,
|
70 |
+
ctx.down_x,
|
71 |
+
ctx.down_y,
|
72 |
+
ctx.pad_x0,
|
73 |
+
ctx.pad_x1,
|
74 |
+
ctx.pad_y0,
|
75 |
+
ctx.pad_y1,
|
76 |
+
)
|
77 |
+
# gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.out_size[0], ctx.out_size[1], ctx.in_size[3])
|
78 |
+
gradgrad_out = gradgrad_out.view(
|
79 |
+
ctx.in_size[0], ctx.in_size[1], ctx.out_size[0], ctx.out_size[1]
|
80 |
+
)
|
81 |
+
|
82 |
+
return gradgrad_out, None, None, None, None, None, None, None, None
|
83 |
+
|
84 |
+
|
85 |
+
class UpFirDn2d(Function):
|
86 |
+
@staticmethod
|
87 |
+
def forward(ctx, input, kernel, up, down, pad):
|
88 |
+
up_x, up_y = up
|
89 |
+
down_x, down_y = down
|
90 |
+
pad_x0, pad_x1, pad_y0, pad_y1 = pad
|
91 |
+
|
92 |
+
kernel_h, kernel_w = kernel.shape
|
93 |
+
batch, channel, in_h, in_w = input.shape
|
94 |
+
ctx.in_size = input.shape
|
95 |
+
|
96 |
+
input = input.reshape(-1, in_h, in_w, 1)
|
97 |
+
|
98 |
+
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
|
99 |
+
|
100 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
101 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
102 |
+
ctx.out_size = (out_h, out_w)
|
103 |
+
|
104 |
+
ctx.up = (up_x, up_y)
|
105 |
+
ctx.down = (down_x, down_y)
|
106 |
+
ctx.pad = (pad_x0, pad_x1, pad_y0, pad_y1)
|
107 |
+
|
108 |
+
g_pad_x0 = kernel_w - pad_x0 - 1
|
109 |
+
g_pad_y0 = kernel_h - pad_y0 - 1
|
110 |
+
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
|
111 |
+
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
|
112 |
+
|
113 |
+
ctx.g_pad = (g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
|
114 |
+
|
115 |
+
out = upfirdn2d_op.upfirdn2d(
|
116 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
117 |
+
)
|
118 |
+
# out = out.view(major, out_h, out_w, minor)
|
119 |
+
out = out.view(-1, channel, out_h, out_w)
|
120 |
+
|
121 |
+
return out
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def backward(ctx, grad_output):
|
125 |
+
kernel, grad_kernel = ctx.saved_tensors
|
126 |
+
|
127 |
+
grad_input = UpFirDn2dBackward.apply(
|
128 |
+
grad_output,
|
129 |
+
kernel,
|
130 |
+
grad_kernel,
|
131 |
+
ctx.up,
|
132 |
+
ctx.down,
|
133 |
+
ctx.pad,
|
134 |
+
ctx.g_pad,
|
135 |
+
ctx.in_size,
|
136 |
+
ctx.out_size,
|
137 |
+
)
|
138 |
+
|
139 |
+
return grad_input, None, None, None, None
|
140 |
+
|
141 |
+
|
142 |
+
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
|
143 |
+
out = UpFirDn2d.apply(
|
144 |
+
input, kernel, (up, up), (down, down), (pad[0], pad[1], pad[0], pad[1])
|
145 |
+
)
|
146 |
+
|
147 |
+
return out
|
148 |
+
|
149 |
+
|
150 |
+
def upfirdn2d_native(
|
151 |
+
input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1
|
152 |
+
):
|
153 |
+
_, in_h, in_w, minor = input.shape
|
154 |
+
kernel_h, kernel_w = kernel.shape
|
155 |
+
|
156 |
+
out = input.view(-1, in_h, 1, in_w, 1, minor)
|
157 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
158 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
159 |
+
|
160 |
+
out = F.pad(
|
161 |
+
out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]
|
162 |
+
)
|
163 |
+
out = out[
|
164 |
+
:,
|
165 |
+
max(-pad_y0, 0): out.shape[1] - max(-pad_y1, 0),
|
166 |
+
max(-pad_x0, 0): out.shape[2] - max(-pad_x1, 0),
|
167 |
+
:,
|
168 |
+
]
|
169 |
+
|
170 |
+
out = out.permute(0, 3, 1, 2)
|
171 |
+
out = out.reshape(
|
172 |
+
[-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]
|
173 |
+
)
|
174 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
175 |
+
out = F.conv2d(out, w)
|
176 |
+
out = out.reshape(
|
177 |
+
-1,
|
178 |
+
minor,
|
179 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
180 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
181 |
+
)
|
182 |
+
out = out.permute(0, 2, 3, 1)
|
183 |
+
|
184 |
+
return out[:, ::down_y, ::down_x, :]
|
models/stylegan2/op/upfirdn2d_kernel.cu
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
// Copyright (c) 2019, NVIDIA Corporation. All rights reserved.
|
2 |
+
//
|
3 |
+
// This work is made available under the Nvidia Source Code License-NC.
|
4 |
+
// To view a copy of this license, visit
|
5 |
+
// https://nvlabs.github.io/stylegan2/license.html
|
6 |
+
|
7 |
+
#include <torch/types.h>
|
8 |
+
|
9 |
+
#include <ATen/ATen.h>
|
10 |
+
#include <ATen/AccumulateType.h>
|
11 |
+
#include <ATen/cuda/CUDAContext.h>
|
12 |
+
#include <ATen/cuda/CUDAApplyUtils.cuh>
|
13 |
+
|
14 |
+
#include <cuda.h>
|
15 |
+
#include <cuda_runtime.h>
|
16 |
+
|
17 |
+
|
18 |
+
static __host__ __device__ __forceinline__ int floor_div(int a, int b) {
|
19 |
+
int c = a / b;
|
20 |
+
|
21 |
+
if (c * b > a) {
|
22 |
+
c--;
|
23 |
+
}
|
24 |
+
|
25 |
+
return c;
|
26 |
+
}
|
27 |
+
|
28 |
+
|
29 |
+
struct UpFirDn2DKernelParams {
|
30 |
+
int up_x;
|
31 |
+
int up_y;
|
32 |
+
int down_x;
|
33 |
+
int down_y;
|
34 |
+
int pad_x0;
|
35 |
+
int pad_x1;
|
36 |
+
int pad_y0;
|
37 |
+
int pad_y1;
|
38 |
+
|
39 |
+
int major_dim;
|
40 |
+
int in_h;
|
41 |
+
int in_w;
|
42 |
+
int minor_dim;
|
43 |
+
int kernel_h;
|
44 |
+
int kernel_w;
|
45 |
+
int out_h;
|
46 |
+
int out_w;
|
47 |
+
int loop_major;
|
48 |
+
int loop_x;
|
49 |
+
};
|
50 |
+
|
51 |
+
|
52 |
+
template <typename scalar_t, int up_x, int up_y, int down_x, int down_y, int kernel_h, int kernel_w, int tile_out_h, int tile_out_w>
|
53 |
+
__global__ void upfirdn2d_kernel(scalar_t* out, const scalar_t* input, const scalar_t* kernel, const UpFirDn2DKernelParams p) {
|
54 |
+
const int tile_in_h = ((tile_out_h - 1) * down_y + kernel_h - 1) / up_y + 1;
|
55 |
+
const int tile_in_w = ((tile_out_w - 1) * down_x + kernel_w - 1) / up_x + 1;
|
56 |
+
|
57 |
+
__shared__ volatile float sk[kernel_h][kernel_w];
|
58 |
+
__shared__ volatile float sx[tile_in_h][tile_in_w];
|
59 |
+
|
60 |
+
int minor_idx = blockIdx.x;
|
61 |
+
int tile_out_y = minor_idx / p.minor_dim;
|
62 |
+
minor_idx -= tile_out_y * p.minor_dim;
|
63 |
+
tile_out_y *= tile_out_h;
|
64 |
+
int tile_out_x_base = blockIdx.y * p.loop_x * tile_out_w;
|
65 |
+
int major_idx_base = blockIdx.z * p.loop_major;
|
66 |
+
|
67 |
+
if (tile_out_x_base >= p.out_w | tile_out_y >= p.out_h | major_idx_base >= p.major_dim) {
|
68 |
+
return;
|
69 |
+
}
|
70 |
+
|
71 |
+
for (int tap_idx = threadIdx.x; tap_idx < kernel_h * kernel_w; tap_idx += blockDim.x) {
|
72 |
+
int ky = tap_idx / kernel_w;
|
73 |
+
int kx = tap_idx - ky * kernel_w;
|
74 |
+
scalar_t v = 0.0;
|
75 |
+
|
76 |
+
if (kx < p.kernel_w & ky < p.kernel_h) {
|
77 |
+
v = kernel[(p.kernel_h - 1 - ky) * p.kernel_w + (p.kernel_w - 1 - kx)];
|
78 |
+
}
|
79 |
+
|
80 |
+
sk[ky][kx] = v;
|
81 |
+
}
|
82 |
+
|
83 |
+
for (int loop_major = 0, major_idx = major_idx_base; loop_major < p.loop_major & major_idx < p.major_dim; loop_major++, major_idx++) {
|
84 |
+
for (int loop_x = 0, tile_out_x = tile_out_x_base; loop_x < p.loop_x & tile_out_x < p.out_w; loop_x++, tile_out_x += tile_out_w) {
|
85 |
+
int tile_mid_x = tile_out_x * down_x + up_x - 1 - p.pad_x0;
|
86 |
+
int tile_mid_y = tile_out_y * down_y + up_y - 1 - p.pad_y0;
|
87 |
+
int tile_in_x = floor_div(tile_mid_x, up_x);
|
88 |
+
int tile_in_y = floor_div(tile_mid_y, up_y);
|
89 |
+
|
90 |
+
__syncthreads();
|
91 |
+
|
92 |
+
for (int in_idx = threadIdx.x; in_idx < tile_in_h * tile_in_w; in_idx += blockDim.x) {
|
93 |
+
int rel_in_y = in_idx / tile_in_w;
|
94 |
+
int rel_in_x = in_idx - rel_in_y * tile_in_w;
|
95 |
+
int in_x = rel_in_x + tile_in_x;
|
96 |
+
int in_y = rel_in_y + tile_in_y;
|
97 |
+
|
98 |
+
scalar_t v = 0.0;
|
99 |
+
|
100 |
+
if (in_x >= 0 & in_y >= 0 & in_x < p.in_w & in_y < p.in_h) {
|
101 |
+
v = input[((major_idx * p.in_h + in_y) * p.in_w + in_x) * p.minor_dim + minor_idx];
|
102 |
+
}
|
103 |
+
|
104 |
+
sx[rel_in_y][rel_in_x] = v;
|
105 |
+
}
|
106 |
+
|
107 |
+
__syncthreads();
|
108 |
+
for (int out_idx = threadIdx.x; out_idx < tile_out_h * tile_out_w; out_idx += blockDim.x) {
|
109 |
+
int rel_out_y = out_idx / tile_out_w;
|
110 |
+
int rel_out_x = out_idx - rel_out_y * tile_out_w;
|
111 |
+
int out_x = rel_out_x + tile_out_x;
|
112 |
+
int out_y = rel_out_y + tile_out_y;
|
113 |
+
|
114 |
+
int mid_x = tile_mid_x + rel_out_x * down_x;
|
115 |
+
int mid_y = tile_mid_y + rel_out_y * down_y;
|
116 |
+
int in_x = floor_div(mid_x, up_x);
|
117 |
+
int in_y = floor_div(mid_y, up_y);
|
118 |
+
int rel_in_x = in_x - tile_in_x;
|
119 |
+
int rel_in_y = in_y - tile_in_y;
|
120 |
+
int kernel_x = (in_x + 1) * up_x - mid_x - 1;
|
121 |
+
int kernel_y = (in_y + 1) * up_y - mid_y - 1;
|
122 |
+
|
123 |
+
scalar_t v = 0.0;
|
124 |
+
|
125 |
+
#pragma unroll
|
126 |
+
for (int y = 0; y < kernel_h / up_y; y++)
|
127 |
+
#pragma unroll
|
128 |
+
for (int x = 0; x < kernel_w / up_x; x++)
|
129 |
+
v += sx[rel_in_y + y][rel_in_x + x] * sk[kernel_y + y * up_y][kernel_x + x * up_x];
|
130 |
+
|
131 |
+
if (out_x < p.out_w & out_y < p.out_h) {
|
132 |
+
out[((major_idx * p.out_h + out_y) * p.out_w + out_x) * p.minor_dim + minor_idx] = v;
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
}
|
137 |
+
}
|
138 |
+
|
139 |
+
|
140 |
+
torch::Tensor upfirdn2d_op(const torch::Tensor& input, const torch::Tensor& kernel,
|
141 |
+
int up_x, int up_y, int down_x, int down_y,
|
142 |
+
int pad_x0, int pad_x1, int pad_y0, int pad_y1) {
|
143 |
+
int curDevice = -1;
|
144 |
+
cudaGetDevice(&curDevice);
|
145 |
+
cudaStream_t stream = at::cuda::getCurrentCUDAStream(curDevice);
|
146 |
+
|
147 |
+
UpFirDn2DKernelParams p;
|
148 |
+
|
149 |
+
auto x = input.contiguous();
|
150 |
+
auto k = kernel.contiguous();
|
151 |
+
|
152 |
+
p.major_dim = x.size(0);
|
153 |
+
p.in_h = x.size(1);
|
154 |
+
p.in_w = x.size(2);
|
155 |
+
p.minor_dim = x.size(3);
|
156 |
+
p.kernel_h = k.size(0);
|
157 |
+
p.kernel_w = k.size(1);
|
158 |
+
p.up_x = up_x;
|
159 |
+
p.up_y = up_y;
|
160 |
+
p.down_x = down_x;
|
161 |
+
p.down_y = down_y;
|
162 |
+
p.pad_x0 = pad_x0;
|
163 |
+
p.pad_x1 = pad_x1;
|
164 |
+
p.pad_y0 = pad_y0;
|
165 |
+
p.pad_y1 = pad_y1;
|
166 |
+
|
167 |
+
p.out_h = (p.in_h * p.up_y + p.pad_y0 + p.pad_y1 - p.kernel_h + p.down_y) / p.down_y;
|
168 |
+
p.out_w = (p.in_w * p.up_x + p.pad_x0 + p.pad_x1 - p.kernel_w + p.down_x) / p.down_x;
|
169 |
+
|
170 |
+
auto out = at::empty({p.major_dim, p.out_h, p.out_w, p.minor_dim}, x.options());
|
171 |
+
|
172 |
+
int mode = -1;
|
173 |
+
|
174 |
+
int tile_out_h;
|
175 |
+
int tile_out_w;
|
176 |
+
|
177 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
178 |
+
mode = 1;
|
179 |
+
tile_out_h = 16;
|
180 |
+
tile_out_w = 64;
|
181 |
+
}
|
182 |
+
|
183 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 3 && p.kernel_w <= 3) {
|
184 |
+
mode = 2;
|
185 |
+
tile_out_h = 16;
|
186 |
+
tile_out_w = 64;
|
187 |
+
}
|
188 |
+
|
189 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
190 |
+
mode = 3;
|
191 |
+
tile_out_h = 16;
|
192 |
+
tile_out_w = 64;
|
193 |
+
}
|
194 |
+
|
195 |
+
if (p.up_x == 2 && p.up_y == 2 && p.down_x == 1 && p.down_y == 1 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
196 |
+
mode = 4;
|
197 |
+
tile_out_h = 16;
|
198 |
+
tile_out_w = 64;
|
199 |
+
}
|
200 |
+
|
201 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 4 && p.kernel_w <= 4) {
|
202 |
+
mode = 5;
|
203 |
+
tile_out_h = 8;
|
204 |
+
tile_out_w = 32;
|
205 |
+
}
|
206 |
+
|
207 |
+
if (p.up_x == 1 && p.up_y == 1 && p.down_x == 2 && p.down_y == 2 && p.kernel_h <= 2 && p.kernel_w <= 2) {
|
208 |
+
mode = 6;
|
209 |
+
tile_out_h = 8;
|
210 |
+
tile_out_w = 32;
|
211 |
+
}
|
212 |
+
|
213 |
+
dim3 block_size;
|
214 |
+
dim3 grid_size;
|
215 |
+
|
216 |
+
if (tile_out_h > 0 && tile_out_w) {
|
217 |
+
p.loop_major = (p.major_dim - 1) / 16384 + 1;
|
218 |
+
p.loop_x = 1;
|
219 |
+
block_size = dim3(32 * 8, 1, 1);
|
220 |
+
grid_size = dim3(((p.out_h - 1) / tile_out_h + 1) * p.minor_dim,
|
221 |
+
(p.out_w - 1) / (p.loop_x * tile_out_w) + 1,
|
222 |
+
(p.major_dim - 1) / p.loop_major + 1);
|
223 |
+
}
|
224 |
+
|
225 |
+
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&] {
|
226 |
+
switch (mode) {
|
227 |
+
case 1:
|
228 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
229 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
230 |
+
);
|
231 |
+
|
232 |
+
break;
|
233 |
+
|
234 |
+
case 2:
|
235 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 1, 1, 3, 3, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
236 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
237 |
+
);
|
238 |
+
|
239 |
+
break;
|
240 |
+
|
241 |
+
case 3:
|
242 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 4, 4, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
243 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
244 |
+
);
|
245 |
+
|
246 |
+
break;
|
247 |
+
|
248 |
+
case 4:
|
249 |
+
upfirdn2d_kernel<scalar_t, 2, 2, 1, 1, 2, 2, 16, 64><<<grid_size, block_size, 0, stream>>>(
|
250 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
251 |
+
);
|
252 |
+
|
253 |
+
break;
|
254 |
+
|
255 |
+
case 5:
|
256 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
257 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
258 |
+
);
|
259 |
+
|
260 |
+
break;
|
261 |
+
|
262 |
+
case 6:
|
263 |
+
upfirdn2d_kernel<scalar_t, 1, 1, 2, 2, 4, 4, 8, 32><<<grid_size, block_size, 0, stream>>>(
|
264 |
+
out.data_ptr<scalar_t>(), x.data_ptr<scalar_t>(), k.data_ptr<scalar_t>(), p
|
265 |
+
);
|
266 |
+
|
267 |
+
break;
|
268 |
+
}
|
269 |
+
});
|
270 |
+
|
271 |
+
return out;
|
272 |
+
}
|