Spaces:
Runtime error
Runtime error
File size: 1,163 Bytes
d748bf5 ac7b15a 03b7a8b ac7b15a cfa812c ac7b15a 6199455 ac7b15a 72386ad 6c47f29 72386ad ac7b15a cfa812c c10c828 ac7b15a 72386ad ac7b15a 423104f ac7b15a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import os
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
from deepdoctection.dataflow import DataFromList
from deepdoctection import get_dd_analyzer
from deepdoctection import Image
import gradio as gr
def analyze_image(img):
# creating an image object and passing to the analyzer by using dataflows
image = Image(file_name="input.png", location="")
image.image = img[:,:,::-1]
df = DataFromList(lst=[image])
analyzer = get_dd_analyzer(ocr=False)
df = analyzer.analyze(dataset_dataflow=df)
df.reset_state()
dp = next(iter(df))
out = dp.as_dict()
out.pop("image")
return dp.viz(show_table_structure=False), out
inputs = [gr.inputs.Image(type='numpy', label="Original Image")]
outputs = [gr.outputs.Image(type="numpy", label="Output Image"), gr.JSON()]
title = "Deepdoctection - A Document AI Package"
description = "Demonstration of layout analysis and output of a document page."
examples = [['sample_1.jpg'],['sample_2.png']]
gr.Interface(analyze_image, inputs, outputs, title=title, description=description, examples=examples).launch() |