deepdoctection / app.py
JaMe76's picture
Update app.py
049580f verified
raw
history blame
13 kB
import os
import importlib.metadata
from os import getcwd, path, environ
from dotenv import load_dotenv
import json
def check_additional_requirements():
if importlib.util.find_spec("detectron2") is None:
os.system('pip install detectron2@git+https://github.com/deepdoctection/detectron2.git')
if importlib.util.find_spec("gradio") is not None:
if importlib.metadata.version("gradio")!="3.44.3":
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.44.3")
else:
os.system("pip install gradio==3.44.3")
return
load_dotenv()
check_additional_requirements()
import deepdoctection as dd
from deepdoctection.dataflow.serialize import DataFromList
import time
import gradio as gr
from botocore.config import Config
# work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552
_DD_ONE = "conf_dd_one.yaml"
dd.ModelCatalog.register("xrf_layout/model_final_inf_only.pt",dd.ModelProfile(
name="xrf_layout/model_final_inf_only.pt",
description="layout_detection/morning-dragon-114",
config="xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274632215],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_LAYOUT"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.text,
"2": dd.LayoutType.title,
"3": dd.LayoutType.list,
"4": dd.LayoutType.table,
"5": dd.LayoutType.figure},
model_wrapper="D2FrcnnDetector",
))
dd.ModelCatalog.register("xrf_cell/model_final_inf_only.pt", dd.ModelProfile(
name="xrf_cell/model_final_inf_only.pt",
description="cell_detection/restful-eon-6",
config="xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274583063],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_CELL"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.cell},
model_wrapper="D2FrcnnDetector",
))
dd.ModelCatalog.register("xrf_item/model_final_inf_only.pt", dd.ModelProfile(
name="xrf_item/model_final_inf_only.pt",
description="item_detection/firm_plasma_14",
config="xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274595351],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_ITEM"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.row, "2": dd.LayoutType.column},
model_wrapper="D2FrcnnDetector",
))
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
# updates
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
cfg.freeze(freezed=False)
cfg.DEVICE = "cpu"
cfg.freeze()
# layout detector
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
assert categories_layout is not None
assert layout_weights_path is not None
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
# cell detector
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
assert categories_cell is not None
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
# row/column detector
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
assert categories_item is not None
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
# text detector
credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"],
"aws_secret_access_key": os.environ["SECRET_KEY"],
"config": Config(region_name=os.environ["REGION"])}
tex_text = dd.TextractOcrDetector(**credentials_kwargs)
def build_gradio_analyzer():
"""Building the Detectron2/DocTr analyzer based on the given config"""
cfg.freeze(freezed=False)
cfg.TAB = True
cfg.TAB_REF = True
cfg.OCR = True
cfg.freeze()
pipe_component_list = []
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
pipe_component_list.append(layout)
nms_service = dd.AnnotationNmsService(nms_pairs=cfg.LAYOUT_NMS_PAIRS.COMBINATIONS,
thresholds=cfg.LAYOUT_NMS_PAIRS.THRESHOLDS)
pipe_component_list.append(nms_service)
if cfg.TAB:
detect_result_generator = dd.DetectResultGenerator(categories_cell)
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, detect_result_generator)
pipe_component_list.append(cell)
detect_result_generator = dd.DetectResultGenerator(categories_item)
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, detect_result_generator)
pipe_component_list.append(item)
table_segmentation = dd.TableSegmentationService(
cfg.SEGMENTATION.ASSIGNMENT_RULE,
cfg.SEGMENTATION.THRESHOLD_ROWS,
cfg.SEGMENTATION.THRESHOLD_COLS,
cfg.SEGMENTATION.FULL_TABLE_TILING,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
dd.LayoutType.table,
[dd.CellType.header, dd.CellType.body, dd.LayoutType.cell],
[dd.LayoutType.row, dd.LayoutType.column],
[dd.CellType.row_number, dd.CellType.column_number],
cfg.SEGMENTATION.STRETCH_RULE
)
pipe_component_list.append(table_segmentation)
if cfg.TAB_REF:
table_segmentation_refinement = dd.TableSegmentationRefinementService()
pipe_component_list.append(table_segmentation_refinement)
if cfg.OCR:
t_text = dd.TextExtractionService(tex_text)
pipe_component_list.append(t_text)
match_words = dd.MatchingService(
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
child_categories=cfg.WORD_MATCHING.CHILD_CATEGORIES,
matching_rule=cfg.WORD_MATCHING.RULE,
threshold=cfg.WORD_MATCHING.THRESHOLD,
max_parent_only=cfg.WORD_MATCHING.MAX_PARENT_ONLY
)
pipe_component_list.append(match_words)
order = dd.TextOrderService(
text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER,
floating_text_block_categories=cfg.TEXT_ORDERING.FLOATING_TEXT_BLOCK,
text_block_categories=cfg.TEXT_ORDERING.TEXT_BLOCK,
include_residual_text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER_TO_TEXT_BLOCK)
pipe_component_list.append(order)
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
return pipe
def analyze_image(img, pdf, max_datapoints):
# creating an image object and passing to the analyzer by using dataflows
analyzer = build_gradio_analyzer()
if img is not None:
image = dd.Image(file_name=str(time.time()).replace(".","") + ".png", location="")
image.image = img[:, :, ::-1]
df = DataFromList(lst=[image])
df = analyzer.analyze(dataset_dataflow=df)
elif pdf:
df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints)
else:
raise ValueError
df.reset_state()
layout_items_str = ""
jsonl_out = []
dpts = []
html_list = []
for dp in df:
dpts.append(dp)
out = dp.as_dict()
jsonl_out.append(out)
out.pop("_image")
layout_items = [layout for layout in dp.layouts if layout.reading_order is not None]
layout_items.sort(key=lambda x: x.reading_order)
layout_items_str += f"\n\n -------- PAGE NUMBER: {dp.page_number+1} ------------- \n"
for item in layout_items:
layout_items_str += f"\n {item.category_name}: {item.text}"
html_list.extend([table.html for table in dp.tables])
if html_list:
html = ("<br /><br /><br />").join(html_list)
else:
html = None
json_object = json.dumps(jsonl_out, indent = 4)
return [dp.viz(show_cells=False) for dp in dpts], layout_items_str, html, json_object
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction"
" and document layout analysis tasks using deep learning models. It does not implement models"
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
" and running models.<br />"
"This pipeline consists of a stack of models powered by <strong>Detectron2"
"</strong> for layout analysis and table recognition. OCR will be provided as well. You can process"
"an image or even a PDF-document. Up to nine pages can be processed. <br />")
gr.Markdown("<center><strong>Please note:</strong> The models for layout detection and table recognition are not open sourced. "
"When you start using deepdoctection you will get models that have been trained on less diversified data and that will perform worse. "
"OCR isn't open sourced either: It uses AWS Textract, which is a commercial service. Keep this in mind, before you get started with "
"your installation and observe dissapointing results. Thanks. </center>")
gr.Markdown("[https://github.com/deepdoctection/deepdoctection](https://github.com/deepdoctection/deepdoctection)")
with gr.Box():
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
with gr.Row():
with gr.Column():
with gr.Tab("Image upload"):
with gr.Column():
inputs = gr.Image(type='numpy', label="Original Image")
with gr.Tab("PDF upload (only first image will be processed) *"):
with gr.Column():
inputs_pdf = gr.File(label="PDF")
gr.Markdown("<sup>* If an image is cached in tab, remove it first</sup>")
with gr.Column():
gr.Examples(
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")],
inputs = inputs)
gr.Examples(examples=[path.join(getcwd(), "sample_3.pdf")], inputs = inputs_pdf)
with gr.Row():
max_imgs = gr.Slider(1, 8, value=2, step=1, label="Number of pages in multi page PDF",
info="Will stop after 9 pages")
with gr.Row():
btn = gr.Button("Run model", variant="primary")
with gr.Box():
gr.Markdown("<h2><center>Outputs</center></h2>")
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown("<center><strong>Contiguous text</strong></center>")
image_text = gr.Textbox()
with gr.Column():
with gr.Box():
gr.Markdown("<center><strong>Layout detection</strong></center>")
gallery = gr.Gallery(
label="Output images", show_label=False, elem_id="gallery"
).style(grid=2)
with gr.Row():
with gr.Box():
gr.Markdown("<center><strong>Table</strong></center>")
html = gr.HTML()
with gr.Row():
with gr.Box():
gr.Markdown("<center><strong>JSON</strong></center>")
json_output = gr.JSON()
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, max_imgs],
outputs=[gallery, image_text, html, json_output])
demo.launch()