Spaces:
Runtime error
Runtime error
import os | |
import importlib.metadata | |
from os import getcwd, path, environ | |
from dotenv import load_dotenv | |
import json | |
def check_additional_requirements(): | |
if importlib.util.find_spec("detectron2") is None: | |
os.system('pip install detectron2@git+https://github.com/deepdoctection/detectron2.git') | |
if importlib.util.find_spec("gradio") is not None: | |
if importlib.metadata.version("gradio")!="3.44.3": | |
os.system("pip uninstall -y gradio") | |
os.system("pip install gradio==3.44.3") | |
else: | |
os.system("pip install gradio==3.44.3") | |
return | |
load_dotenv() | |
check_additional_requirements() | |
import deepdoctection as dd | |
from deepdoctection.dataflow.serialize import DataFromList | |
import time | |
import gradio as gr | |
from botocore.config import Config | |
# work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552 | |
_DD_ONE = "conf_dd_one.yaml" | |
dd.ModelCatalog.register("xrf_layout/model_final_inf_only.pt",dd.ModelProfile( | |
name="xrf_layout/model_final_inf_only.pt", | |
description="layout_detection/morning-dragon-114", | |
config="xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml", | |
size=[274632215], | |
tp_model=False, | |
hf_repo_id=environ.get("HF_REPO_LAYOUT"), | |
hf_model_name="model_final_inf_only.pt", | |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], | |
categories={"1": dd.LayoutType.text, | |
"2": dd.LayoutType.title, | |
"3": dd.LayoutType.list, | |
"4": dd.LayoutType.table, | |
"5": dd.LayoutType.figure}, | |
model_wrapper="D2FrcnnDetector", | |
)) | |
dd.ModelCatalog.register("xrf_cell/model_final_inf_only.pt", dd.ModelProfile( | |
name="xrf_cell/model_final_inf_only.pt", | |
description="cell_detection/restful-eon-6", | |
config="xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml", | |
size=[274583063], | |
tp_model=False, | |
hf_repo_id=environ.get("HF_REPO_CELL"), | |
hf_model_name="model_final_inf_only.pt", | |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], | |
categories={"1": dd.LayoutType.cell}, | |
model_wrapper="D2FrcnnDetector", | |
)) | |
dd.ModelCatalog.register("xrf_item/model_final_inf_only.pt", dd.ModelProfile( | |
name="xrf_item/model_final_inf_only.pt", | |
description="item_detection/firm_plasma_14", | |
config="xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml", | |
size=[274595351], | |
tp_model=False, | |
hf_repo_id=environ.get("HF_REPO_ITEM"), | |
hf_model_name="model_final_inf_only.pt", | |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], | |
categories={"1": dd.LayoutType.row, "2": dd.LayoutType.column}, | |
model_wrapper="D2FrcnnDetector", | |
)) | |
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input | |
# updates | |
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE)) | |
cfg.freeze(freezed=False) | |
cfg.DEVICE = "cpu" | |
cfg.freeze() | |
# layout detector | |
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT) | |
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT) | |
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories | |
assert categories_layout is not None | |
assert layout_weights_path is not None | |
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE) | |
# cell detector | |
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL) | |
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL) | |
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories | |
assert categories_cell is not None | |
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE) | |
# row/column detector | |
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM) | |
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM) | |
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories | |
assert categories_item is not None | |
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE) | |
# text detector | |
credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"], | |
"aws_secret_access_key": os.environ["SECRET_KEY"], | |
"config": Config(region_name=os.environ["REGION"])} | |
tex_text = dd.TextractOcrDetector(**credentials_kwargs) | |
def build_gradio_analyzer(): | |
"""Building the Detectron2/DocTr analyzer based on the given config""" | |
cfg.freeze(freezed=False) | |
cfg.TAB = True | |
cfg.TAB_REF = True | |
cfg.OCR = True | |
cfg.freeze() | |
pipe_component_list = [] | |
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True) | |
pipe_component_list.append(layout) | |
nms_service = dd.AnnotationNmsService(nms_pairs=cfg.LAYOUT_NMS_PAIRS.COMBINATIONS, | |
thresholds=cfg.LAYOUT_NMS_PAIRS.THRESHOLDS) | |
pipe_component_list.append(nms_service) | |
if cfg.TAB: | |
detect_result_generator = dd.DetectResultGenerator(categories_cell) | |
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, detect_result_generator) | |
pipe_component_list.append(cell) | |
detect_result_generator = dd.DetectResultGenerator(categories_item) | |
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, detect_result_generator) | |
pipe_component_list.append(item) | |
table_segmentation = dd.TableSegmentationService( | |
cfg.SEGMENTATION.ASSIGNMENT_RULE, | |
cfg.SEGMENTATION.THRESHOLD_ROWS, | |
cfg.SEGMENTATION.THRESHOLD_COLS, | |
cfg.SEGMENTATION.FULL_TABLE_TILING, | |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS, | |
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS, | |
dd.LayoutType.table, | |
[dd.CellType.header, dd.CellType.body, dd.LayoutType.cell], | |
[dd.LayoutType.row, dd.LayoutType.column], | |
[dd.CellType.row_number, dd.CellType.column_number], | |
cfg.SEGMENTATION.STRETCH_RULE | |
) | |
pipe_component_list.append(table_segmentation) | |
if cfg.TAB_REF: | |
table_segmentation_refinement = dd.TableSegmentationRefinementService() | |
pipe_component_list.append(table_segmentation_refinement) | |
if cfg.OCR: | |
t_text = dd.TextExtractionService(tex_text) | |
pipe_component_list.append(t_text) | |
match_words = dd.MatchingService( | |
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES, | |
child_categories=cfg.WORD_MATCHING.CHILD_CATEGORIES, | |
matching_rule=cfg.WORD_MATCHING.RULE, | |
threshold=cfg.WORD_MATCHING.THRESHOLD, | |
max_parent_only=cfg.WORD_MATCHING.MAX_PARENT_ONLY | |
) | |
pipe_component_list.append(match_words) | |
order = dd.TextOrderService( | |
text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER, | |
floating_text_block_categories=cfg.TEXT_ORDERING.FLOATING_TEXT_BLOCK, | |
text_block_categories=cfg.TEXT_ORDERING.TEXT_BLOCK, | |
include_residual_text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER_TO_TEXT_BLOCK) | |
pipe_component_list.append(order) | |
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list) | |
return pipe | |
def analyze_image(img, pdf, max_datapoints): | |
# creating an image object and passing to the analyzer by using dataflows | |
analyzer = build_gradio_analyzer() | |
if img is not None: | |
image = dd.Image(file_name=str(time.time()).replace(".","") + ".png", location="") | |
image.image = img[:, :, ::-1] | |
df = DataFromList(lst=[image]) | |
df = analyzer.analyze(dataset_dataflow=df) | |
elif pdf: | |
df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints) | |
else: | |
raise ValueError | |
df.reset_state() | |
layout_items_str = "" | |
jsonl_out = [] | |
dpts = [] | |
html_list = [] | |
for dp in df: | |
dpts.append(dp) | |
out = dp.as_dict() | |
jsonl_out.append(out) | |
out.pop("_image") | |
layout_items = [layout for layout in dp.layouts if layout.reading_order is not None] | |
layout_items.sort(key=lambda x: x.reading_order) | |
layout_items_str += f"\n\n -------- PAGE NUMBER: {dp.page_number+1} ------------- \n" | |
for item in layout_items: | |
layout_items_str += f"\n {item.category_name}: {item.text}" | |
html_list.extend([table.html for table in dp.tables]) | |
if html_list: | |
html = ("<br /><br /><br />").join(html_list) | |
else: | |
html = None | |
json_object = json.dumps(jsonl_out, indent = 4) | |
return [dp.viz(show_cells=False) for dp in dpts], layout_items_str, html, json_object | |
demo = gr.Blocks(css="scrollbar.css") | |
with demo: | |
with gr.Box(): | |
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>") | |
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction" | |
" and document layout analysis tasks using deep learning models. It does not implement models" | |
" but enables you to build pipelines using highly acknowledged libraries for object detection," | |
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating" | |
" and running models.<br />" | |
"This pipeline consists of a stack of models powered by <strong>Detectron2" | |
"</strong> for layout analysis and table recognition. OCR will be provided as well. You can process" | |
"an image or even a PDF-document. Up to nine pages can be processed. <br />") | |
gr.Markdown("<center><strong>Please note:</strong> The models for layout detection and table recognition are not open sourced. " | |
"When you start using deepdoctection you will get models that have been trained on less diversified data and that will perform worse. " | |
"OCR isn't open sourced either: It uses AWS Textract, which is a commercial service. Keep this in mind, before you get started with " | |
"your installation and observe dissapointing results. Thanks. </center>") | |
gr.Markdown("[https://github.com/deepdoctection/deepdoctection](https://github.com/deepdoctection/deepdoctection)") | |
with gr.Box(): | |
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Image upload"): | |
with gr.Column(): | |
inputs = gr.Image(type='numpy', label="Original Image") | |
with gr.Tab("PDF upload (only first image will be processed) *"): | |
with gr.Column(): | |
inputs_pdf = gr.File(label="PDF") | |
gr.Markdown("<sup>* If an image is cached in tab, remove it first</sup>") | |
with gr.Column(): | |
gr.Examples( | |
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")], | |
inputs = inputs) | |
gr.Examples(examples=[path.join(getcwd(), "sample_3.pdf")], inputs = inputs_pdf) | |
with gr.Row(): | |
max_imgs = gr.Slider(1, 8, value=2, step=1, label="Number of pages in multi page PDF", | |
info="Will stop after 9 pages") | |
with gr.Row(): | |
btn = gr.Button("Run model", variant="primary") | |
with gr.Box(): | |
gr.Markdown("<h2><center>Outputs</center></h2>") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>Contiguous text</strong></center>") | |
image_text = gr.Textbox() | |
with gr.Column(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>Layout detection</strong></center>") | |
gallery = gr.Gallery( | |
label="Output images", show_label=False, elem_id="gallery" | |
).style(grid=2) | |
with gr.Row(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>Table</strong></center>") | |
html = gr.HTML() | |
with gr.Row(): | |
with gr.Box(): | |
gr.Markdown("<center><strong>JSON</strong></center>") | |
json_output = gr.JSON() | |
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, max_imgs], | |
outputs=[gallery, image_text, html, json_output]) | |
demo.launch() | |