Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,23 @@
|
|
1 |
import os
|
2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
3 |
|
|
|
4 |
import deepdoctection as dd
|
5 |
-
|
6 |
-
from deepdoctection.extern.model import ModelProfile
|
7 |
-
from deepdoctection.analyzer.dd import build_analyzer, _auto_select_lib_and_device, _maybe_copy_config_to_cache
|
8 |
-
from deepdoctection.utils.metacfg import set_config_by_yaml
|
9 |
-
from deepdoctection.dataflow import DataFromList
|
10 |
|
11 |
import gradio as gr
|
12 |
|
13 |
-
_DD_ONE = "deepdoctection/configs/conf_dd_one.yaml"
|
14 |
-
_TESSERACT = "deepdoctection/configs/conf_tesseract.yaml"
|
15 |
|
16 |
-
|
|
|
|
|
|
|
17 |
name="layout/model_final_inf_only.pt",
|
18 |
description="Detectron2 layout detection model trained on private datasets",
|
19 |
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
20 |
size=[274632215],
|
21 |
tp_model=False,
|
22 |
-
hf_repo_id=
|
23 |
hf_model_name="model_final_inf_only.pt",
|
24 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
25 |
categories={"1": dd.LayoutType.text,
|
@@ -28,53 +26,211 @@ dd.ModelCatalog.register("layout/model_final_inf_only.pt",ModelProfile(
|
|
28 |
"4": dd.LayoutType.table,
|
29 |
"5": dd.LayoutType.figure},
|
30 |
))
|
31 |
-
|
32 |
-
def get_space_dd_analyzer():
|
33 |
-
# get a dd analyzer with a special layout model
|
34 |
-
lib, device = _auto_select_lib_and_device()
|
35 |
-
dd_one_config_path = _maybe_copy_config_to_cache(_DD_ONE)
|
36 |
-
_maybe_copy_config_to_cache(_TESSERACT)
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
cfg.freeze(freezed=False)
|
42 |
-
cfg.
|
43 |
-
cfg.
|
44 |
-
cfg.
|
45 |
-
cfg.TAB_REF = True
|
46 |
-
cfg.OCR = True
|
47 |
-
cfg.LANG = None
|
48 |
-
cfg.WEIGHTS.D2LAYOUT = "layout/model_final_inf_only.pt"
|
49 |
cfg.freeze()
|
50 |
-
|
51 |
-
return build_analyzer(cfg)
|
52 |
-
|
53 |
-
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
image.image = img[:,:,::-1]
|
59 |
|
60 |
-
|
|
|
|
|
61 |
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
out = dp.as_dict()
|
68 |
out.pop("image")
|
69 |
-
|
70 |
-
return dp.viz(show_table_structure=False), out
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
|
|
|
1 |
import os
|
2 |
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
|
3 |
|
4 |
+
from os import getcwd, path, environ
|
5 |
import deepdoctection as dd
|
6 |
+
from deepdoctection.dataflow.serialize import DataFromList
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import gradio as gr
|
9 |
|
|
|
|
|
10 |
|
11 |
+
_DD_ONE = "conf_dd_one.yaml"
|
12 |
+
_DETECTIONS = ["table", "ocr"]
|
13 |
+
|
14 |
+
dd.ModelCatalog.register("layout/model_final_inf_only.pt",dd.ModelProfile(
|
15 |
name="layout/model_final_inf_only.pt",
|
16 |
description="Detectron2 layout detection model trained on private datasets",
|
17 |
config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
|
18 |
size=[274632215],
|
19 |
tp_model=False,
|
20 |
+
hf_repo_id=environ.get("HF_REPO"),
|
21 |
hf_model_name="model_final_inf_only.pt",
|
22 |
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
|
23 |
categories={"1": dd.LayoutType.text,
|
|
|
26 |
"4": dd.LayoutType.table,
|
27 |
"5": dd.LayoutType.figure},
|
28 |
))
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
|
31 |
+
# updates
|
32 |
+
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
|
33 |
+
cfg.freeze(freezed=False)
|
34 |
+
cfg.DEVICE = "cpu"
|
35 |
+
cfg.freeze()
|
36 |
+
|
37 |
+
# layout detector
|
38 |
+
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
|
39 |
+
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
|
40 |
+
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
|
41 |
+
assert categories_layout is not None
|
42 |
+
assert layout_weights_path is not None
|
43 |
+
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
|
44 |
+
|
45 |
+
# cell detector
|
46 |
+
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
|
47 |
+
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
|
48 |
+
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
|
49 |
+
assert categories_cell is not None
|
50 |
+
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
|
51 |
+
|
52 |
+
# row/column detector
|
53 |
+
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
|
54 |
+
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
|
55 |
+
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
|
56 |
+
assert categories_item is not None
|
57 |
+
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
|
58 |
+
|
59 |
+
# word detector
|
60 |
+
det = dd.DoctrTextlineDetector()
|
61 |
+
|
62 |
+
# text recognizer
|
63 |
+
rec = dd.DoctrTextRecognizer()
|
64 |
+
|
65 |
+
|
66 |
+
def build_gradio_analyzer(table, table_ref, ocr):
|
67 |
+
"""Building the Detectron2/DocTr analyzer based on the given config"""
|
68 |
|
69 |
cfg.freeze(freezed=False)
|
70 |
+
cfg.TAB = table
|
71 |
+
cfg.TAB_REF = table_ref
|
72 |
+
cfg.OCR = ocr
|
|
|
|
|
|
|
|
|
73 |
cfg.freeze()
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
pipe_component_list = []
|
76 |
+
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
|
77 |
+
pipe_component_list.append(layout)
|
|
|
78 |
|
79 |
+
if cfg.TAB:
|
80 |
+
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, True)
|
81 |
+
pipe_component_list.append(cell)
|
82 |
|
83 |
+
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, True)
|
84 |
+
pipe_component_list.append(item)
|
85 |
|
86 |
+
table_segmentation = dd.TableSegmentationService(
|
87 |
+
cfg.SEGMENTATION.ASSIGNMENT_RULE,
|
88 |
+
cfg.SEGMENTATION.IOU_THRESHOLD_ROWS
|
89 |
+
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
|
90 |
+
else cfg.SEGMENTATION.IOA_THRESHOLD_ROWS,
|
91 |
+
cfg.SEGMENTATION.IOU_THRESHOLD_COLS
|
92 |
+
if cfg.SEGMENTATION.ASSIGNMENT_RULE in ["iou"]
|
93 |
+
else cfg.SEGMENTATION.IOA_THRESHOLD_COLS,
|
94 |
+
cfg.SEGMENTATION.FULL_TABLE_TILING,
|
95 |
+
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
|
96 |
+
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
|
97 |
+
)
|
98 |
+
pipe_component_list.append(table_segmentation)
|
99 |
+
|
100 |
+
if cfg.TAB_REF:
|
101 |
+
table_segmentation_refinement = dd.TableSegmentationRefinementService()
|
102 |
+
pipe_component_list.append(table_segmentation_refinement)
|
103 |
+
|
104 |
+
if cfg.OCR:
|
105 |
+
d_layout_text = dd.ImageLayoutService(det, to_image=True, crop_image=True)
|
106 |
+
pipe_component_list.append(d_layout_text)
|
107 |
+
|
108 |
+
d_text = dd.TextExtractionService(rec, extract_from_roi="WORD")
|
109 |
+
pipe_component_list.append(d_text)
|
110 |
+
|
111 |
+
match = dd.MatchingService(
|
112 |
+
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
|
113 |
+
child_categories=dd.LayoutType.word,
|
114 |
+
matching_rule=cfg.WORD_MATCHING.RULE,
|
115 |
+
threshold=cfg.WORD_MATCHING.IOU_THRESHOLD
|
116 |
+
if cfg.WORD_MATCHING.RULE in ["iou"]
|
117 |
+
else cfg.WORD_MATCHING.IOA_THRESHOLD,
|
118 |
+
)
|
119 |
+
pipe_component_list.append(match)
|
120 |
+
order = dd.TextOrderService(
|
121 |
+
text_container=dd.LayoutType.word,
|
122 |
+
floating_text_block_names=[dd.LayoutType.title, dd.LayoutType.text, dd.LayoutType.list],
|
123 |
+
text_block_names=[
|
124 |
+
dd.LayoutType.title,
|
125 |
+
dd.LayoutType.text,
|
126 |
+
dd.LayoutType.list,
|
127 |
+
dd.LayoutType.cell,
|
128 |
+
dd.CellType.header,
|
129 |
+
dd.CellType.body,
|
130 |
+
],
|
131 |
+
)
|
132 |
+
pipe_component_list.append(order)
|
133 |
+
|
134 |
+
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
|
135 |
+
|
136 |
+
return pipe
|
137 |
+
|
138 |
+
|
139 |
+
def prepare_output(dp, add_table, add_ocr):
|
140 |
out = dp.as_dict()
|
141 |
out.pop("image")
|
|
|
|
|
142 |
|
143 |
+
layout_items = dp.items
|
144 |
+
if add_ocr:
|
145 |
+
layout_items.sort(key=lambda x: x.reading_order)
|
146 |
+
layout_items_str = ""
|
147 |
+
for item in layout_items:
|
148 |
+
layout_items_str += f"\n {item.layout_type}: {item.text}"
|
149 |
+
if add_table:
|
150 |
+
html_list = [table.html for table in dp.tables]
|
151 |
+
if html_list:
|
152 |
+
html = html_list[0]
|
153 |
+
else:
|
154 |
+
html = None
|
155 |
+
else:
|
156 |
+
html = None
|
157 |
+
|
158 |
+
return dp.viz(show_table_structure=False), layout_items_str, html, out
|
159 |
+
|
160 |
+
|
161 |
+
def analyze_image(img, pdf, attributes):
|
162 |
+
|
163 |
+
# creating an image object and passing to the analyzer by using dataflows
|
164 |
+
add_table = _DETECTIONS[0] in attributes
|
165 |
+
add_ocr = _DETECTIONS[1] in attributes
|
166 |
+
|
167 |
+
analyzer = build_gradio_analyzer(add_table, add_table, add_ocr)
|
168 |
+
|
169 |
+
if img is not None:
|
170 |
+
image = dd.Image(file_name="input.png", location="")
|
171 |
+
image.image = img[:, :, ::-1]
|
172 |
+
|
173 |
+
df = DataFromList(lst=[image])
|
174 |
+
df = analyzer.analyze(dataset_dataflow=df)
|
175 |
+
elif pdf:
|
176 |
+
df = analyzer.analyze(path=pdf.name, max_datapoints=3)
|
177 |
+
else:
|
178 |
+
raise ValueError
|
179 |
+
|
180 |
+
df.reset_state()
|
181 |
+
df_iter = iter(df)
|
182 |
+
|
183 |
+
dp = next(df_iter)
|
184 |
+
|
185 |
+
return prepare_output(dp, add_table, add_ocr)
|
186 |
+
|
187 |
+
|
188 |
+
demo = gr.Blocks(css="scrollbar.css")
|
189 |
+
|
190 |
+
with demo:
|
191 |
+
with gr.Box():
|
192 |
+
gr.Markdown("<h1><center>deepdoctection - A Document AI Package</center></h1>")
|
193 |
+
gr.Markdown("<strong>deep</strong>doctection is a Python library that orchestrates document extraction"
|
194 |
+
" and document layout analysis tasks using deep learning models. It does not implement models"
|
195 |
+
" but enables you to build pipelines using highly acknowledged libraries for object detection,"
|
196 |
+
" OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating"
|
197 |
+
" and running models.\n This pipeline consists of a stack of models powered by <strong>Detectron2"
|
198 |
+
"</strong> for layout analysis and table recognition and <strong>DocTr</strong> for OCR.")
|
199 |
+
with gr.Box():
|
200 |
+
gr.Markdown("<h2><center>Upload a document and choose setting</center></h2>")
|
201 |
+
with gr.Row():
|
202 |
+
with gr.Column():
|
203 |
+
with gr.Tab("Image upload"):
|
204 |
+
with gr.Column():
|
205 |
+
inputs = gr.Image(type='numpy', label="Original Image")
|
206 |
+
with gr.Tab("PDF upload (only first image will be processed)"):
|
207 |
+
with gr.Column():
|
208 |
+
inputs_pdf = gr.File(label="PDF")
|
209 |
+
with gr.Column():
|
210 |
+
gr.Examples(
|
211 |
+
examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")],
|
212 |
+
inputs = inputs)
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
tok_input = gr.CheckboxGroup(
|
216 |
+
_DETECTIONS, value=_DETECTIONS, label="Additional extractions", interactive=True)
|
217 |
+
with gr.Row():
|
218 |
+
btn = gr.Button("Run model", variant="primary")
|
219 |
|
220 |
+
with gr.Box():
|
221 |
+
with gr.Row():
|
222 |
+
with gr.Column():
|
223 |
+
gr.Markdown("<h2><center>Text output</center></h2>")
|
224 |
+
gr.Markdown("Will only show contiguous text from text blocks, titles and lists")
|
225 |
+
image_text = gr.Textbox()
|
226 |
+
gr.Markdown("<h2><center>First table</center></h2>")
|
227 |
+
html = gr.HTML()
|
228 |
+
gr.Markdown("<h2><center>JSON output</center></h2>")
|
229 |
+
json = gr.JSON()
|
230 |
+
with gr.Column():
|
231 |
+
gr.Markdown("<h2><center>Layout detection</center></h2>")
|
232 |
+
image_output = gr.Image(type="numpy", label="Output Image")
|
233 |
|
234 |
+
btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, tok_input], outputs=[image_output, image_text, html, json])
|
235 |
|
236 |
+
demo.launch()
|