import os os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"],"aws_secret_access_key": os.environ["SECRET_KEY"]} # work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552 os.system("pip uninstall -y gradio") os.system("pip install gradio==3.4.1") os.system(os.environ["DD_ADDONS"]) from os import getcwd, path, environ import deepdoctection as dd from deepdoctection.dataflow.serialize import DataFromList from dd_addons.extern import PdfTextDetector, PostProcessor, get_xsl_path from dd_addons.pipe.conn import PostProcessorService import gradio as gr _DD_ONE = "conf_dd_one.yaml" _XSL_PATH = get_xsl_path() dd.ModelCatalog.register("xrf_layout/model_final_inf_only.pt",dd.ModelProfile( name="xrf_layout/model_final_inf_only.pt", description="layout_detection/morning-dragon-114", config="xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml", size=[274632215], tp_model=False, hf_repo_id=environ.get("HF_REPO_LAYOUT"), hf_model_name="model_final_inf_only.pt", hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], categories={"1": dd.LayoutType.text, "2": dd.LayoutType.title, "3": dd.LayoutType.list, "4": dd.LayoutType.table, "5": dd.LayoutType.figure}, model_wrapper="D2FrcnnDetector", )) dd.ModelCatalog.register("xrf_cell/model_final_inf_only.pt", dd.ModelProfile( name="xrf_cell/model_final_inf_only.pt", description="cell_detection/restful-eon-6", config="xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml", size=[274583063], tp_model=False, hf_repo_id=environ.get("HF_REPO_CELL"), hf_model_name="model_final_inf_only.pt", hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], categories={"1": dd.LayoutType.cell}, model_wrapper="D2FrcnnDetector", )) dd.ModelCatalog.register("xrf_item/model_final_inf_only.pt", dd.ModelProfile( name="xrf_item/model_final_inf_only.pt", description="item_detection/firm_plasma_14", config="xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml", size=[274595351], tp_model=False, hf_repo_id=environ.get("HF_REPO_ITEM"), hf_model_name="model_final_inf_only.pt", hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], categories={"1": dd.LayoutType.row, "2": dd.LayoutType.column}, model_wrapper="D2FrcnnDetector", )) # Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input # updates cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE)) cfg.freeze(freezed=False) cfg.DEVICE = "cpu" cfg.freeze() # layout detector layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT) layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT) categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories assert categories_layout is not None assert layout_weights_path is not None d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE) # cell detector cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL) cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL) categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories assert categories_cell is not None d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE) # row/column detector item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM) item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM) categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories assert categories_item is not None d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE) # pdf miner pdf_text = PdfTextDetector(_XSL_PATH) # text detector tex_text = dd.TextractOcrDetector(**credentials_kwargs) def build_gradio_analyzer(): """Building the Detectron2/DocTr analyzer based on the given config""" cfg.freeze(freezed=False) cfg.TAB = True cfg.TAB_REF = True cfg.OCR = True cfg.freeze() pipe_component_list = [] layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True) pipe_component_list.append(layout) nms_service = dd.AnnotationNmsService(nms_pairs=cfg.LAYOUT_NMS_PAIRS.COMBINATIONS, thresholds=cfg.LAYOUT_NMS_PAIRS.THRESHOLDS) pipe_component_list.append(nms_service) if cfg.TAB: detect_result_generator = dd.DetectResultGenerator(categories_cell) cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, detect_result_generator) pipe_component_list.append(cell) detect_result_generator = dd.DetectResultGenerator(categories_item) item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, detect_result_generator) pipe_component_list.append(item) table_segmentation = dd.TableSegmentationService( cfg.SEGMENTATION.ASSIGNMENT_RULE, cfg.SEGMENTATION.THRESHOLD_ROWS, cfg.SEGMENTATION.THRESHOLD_COLS, cfg.SEGMENTATION.FULL_TABLE_TILING, cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS, cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS, cfg.SEGMENTATION.STRETCH_RULE ) pipe_component_list.append(table_segmentation) if cfg.TAB_REF: table_segmentation_refinement = dd.TableSegmentationRefinementService() pipe_component_list.append(table_segmentation_refinement) if cfg.OCR: d_text = dd.TextExtractionService(pdf_text) pipe_component_list.append(d_text) t_text = dd.TextExtractionService(tex_text,skip_if_text_extracted=True) pipe_component_list.append(t_text) match_words = dd.MatchingService( parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES, child_categories=cfg.WORD_MATCHING.CHILD_CATEGORIES, matching_rule=cfg.WORD_MATCHING.RULE, threshold=cfg.WORD_MATCHING.THRESHOLD, max_parent_only=cfg.WORD_MATCHING.MAX_PARENT_ONLY ) pipe_component_list.append(match_words) order = dd.TextOrderService( text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER, floating_text_block_names=cfg.TEXT_ORDERING.FLOATING_TEXT_BLOCK, text_block_names=cfg.TEXT_ORDERING.TEXT_BLOCK, text_containers_to_text_block=cfg.TEXT_ORDERING.TEXT_CONTAINER_TO_TEXT_BLOCK ) pipe_component_list.append(order) pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list) post_processor = PostProcessor("deepdoctection", **credentials_kwargs) post_service = PostProcessorService(post_processor) pipe_component_list.append(post_service) return pipe def analyze_image(img, pdf, max_datapoints): # creating an image object and passing to the analyzer by using dataflows analyzer = build_gradio_analyzer() if img is not None: image = dd.Image(file_name="input.png", location="") image.image = img[:, :, ::-1] df = DataFromList(lst=[image]) df = analyzer.analyze(dataset_dataflow=df) elif pdf: df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints) else: raise ValueError df.reset_state() layout_items_str = "" jsonl_out = [] dpts = [] html_list = [] for dp in df: dpts.append(dp) out = dp.as_dict() jsonl_out.append(out) out.pop("_image") layout_items = dp.layouts layout_items.sort(key=lambda x: x.reading_order) layout_items_str += f"\n\n -------- PAGE NUMBER: {dp.page_number+1} ------------- \n" for item in layout_items: layout_items_str += f"\n {item.category_name}: {item.text}" html_list.extend([table.html for table in dp.tables]) if html_list: html = ("


").join(html_list) else: html = None return [dp.viz(show_cells=False) for dp in dpts], layout_items_str, html, jsonl_out demo = gr.Blocks(css="scrollbar.css") with demo: with gr.Box(): gr.Markdown("

deepdoctection - A Document AI Package

") gr.Markdown("deepdoctection is a Python library that orchestrates document extraction" " and document layout analysis tasks using deep learning models. It does not implement models" " but enables you to build pipelines using highly acknowledged libraries for object detection," " OCR and selected NLP tasks and provides an integrated frameworks for fine-tuning, evaluating" " and running models.
" "This pipeline consists of a stack of models powered by Detectron2" " for layout analysis and table recognition. OCR will be provided as well. You can process" "an image or even a PDF-document. Up to nine pages can be processed.
") gr.Markdown("[https://github.com/deepdoctection/deepdoctection](https://github.com/deepdoctection/deepdoctection)") with gr.Box(): gr.Markdown("

Upload a document and choose setting

") with gr.Row(): with gr.Column(): with gr.Tab("Image upload"): with gr.Column(): inputs = gr.Image(type='numpy', label="Original Image") with gr.Tab("PDF upload (only first image will be processed) *"): with gr.Column(): inputs_pdf = gr.File(label="PDF") gr.Markdown("* If an image is cached in tab, remove it first") with gr.Column(): gr.Examples( examples=[path.join(getcwd(), "sample_1.jpg"), path.join(getcwd(), "sample_2.png")], inputs = inputs) gr.Examples(examples=[path.join(getcwd(), "sample_3.pdf")], inputs = inputs_pdf) with gr.Row(): max_imgs = gr.Slider(1, 8, value=2, step=1, label="Number of pages in multi page PDF", info="Will stop after 9 pages") with gr.Row(): btn = gr.Button("Run model", variant="primary") with gr.Box(): gr.Markdown("

Outputs

") with gr.Row(): with gr.Column(): with gr.Box(): gr.Markdown("
Contiguous text
") image_text = gr.Textbox() with gr.Column(): with gr.Box(): gr.Markdown("
Layout detection
") gallery = gr.Gallery( label="Output images", show_label=False, elem_id="gallery" ).style(grid=2) with gr.Row(): with gr.Box(): gr.Markdown("
Table
") html = gr.HTML() with gr.Row(): with gr.Box(): gr.Markdown("
JSON
") json = gr.JSON() btn.click(fn=analyze_image, inputs=[inputs, inputs_pdf, max_imgs], outputs=[gallery, image_text, html, json]) demo.launch()