import os
import time
import importlib.metadata
from os import getcwd, path, environ
import deepdoctection as dd
from deepdoctection.dataflow.serialize import DataFromList
from dd_addons.extern import PdfTextDetector, PostProcessor, get_xsl_path
from dd_addons.pipe.conn import PostProcessorService
import gradio as gr
from botocore.config import Config
from dotenv import load_dotenv
load_dotenv()
def check_additional_requirements():
if not dd.detectron2_available():
os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html')
if importlib.util.find_spec("gradio") is not None:
if importlib.metadata.version("gradio")!="3.4.1":
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.4.1")
else:
os.system("pip install gradio==3.4.1")
os.system(os.environ["DD_ADDONS"])
return
check_additional_requirements()
# work around: https://discuss.huggingface.co/t/how-to-install-a-specific-version-of-gradio-in-spaces/13552
_DD_ONE = "conf_dd_one.yaml"
_XSL_PATH = get_xsl_path()
dd.ModelCatalog.register("xrf_layout/model_final_inf_only.pt",dd.ModelProfile(
name="xrf_layout/model_final_inf_only.pt",
description="layout_detection/morning-dragon-114",
config="xrf_dd/layout/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274632215],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_LAYOUT"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.text,
"2": dd.LayoutType.title,
"3": dd.LayoutType.list,
"4": dd.LayoutType.table,
"5": dd.LayoutType.figure},
model_wrapper="D2FrcnnDetector",
))
dd.ModelCatalog.register("xrf_cell/model_final_inf_only.pt", dd.ModelProfile(
name="xrf_cell/model_final_inf_only.pt",
description="cell_detection/restful-eon-6",
config="xrf_dd/cell/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274583063],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_CELL"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.cell},
model_wrapper="D2FrcnnDetector",
))
dd.ModelCatalog.register("xrf_item/model_final_inf_only.pt", dd.ModelProfile(
name="xrf_item/model_final_inf_only.pt",
description="item_detection/firm_plasma_14",
config="xrf_dd/item/CASCADE_RCNN_R_50_FPN_GN.yaml",
size=[274595351],
tp_model=False,
hf_repo_id=environ.get("HF_REPO_ITEM"),
hf_model_name="model_final_inf_only.pt",
hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"],
categories={"1": dd.LayoutType.row, "2": dd.LayoutType.column},
model_wrapper="D2FrcnnDetector",
))
# Set up of the configuration and logging. Models are globally defined, so that they are not re-loaded once the input
# updates
cfg = dd.set_config_by_yaml(path.join(getcwd(),_DD_ONE))
cfg.freeze(freezed=False)
cfg.DEVICE = "cpu"
cfg.freeze()
# layout detector
layout_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2LAYOUT)
layout_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2LAYOUT)
categories_layout = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2LAYOUT).categories
assert categories_layout is not None
assert layout_weights_path is not None
d_layout = dd.D2FrcnnDetector(layout_config_path, layout_weights_path, categories_layout, device=cfg.DEVICE)
# cell detector
cell_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2CELL)
cell_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2CELL)
categories_cell = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2CELL).categories
assert categories_cell is not None
d_cell = dd.D2FrcnnDetector(cell_config_path, cell_weights_path, categories_cell, device=cfg.DEVICE)
# row/column detector
item_config_path = dd.ModelCatalog.get_full_path_configs(cfg.CONFIG.D2ITEM)
item_weights_path = dd.ModelDownloadManager.maybe_download_weights_and_configs(cfg.WEIGHTS.D2ITEM)
categories_item = dd.ModelCatalog.get_profile(cfg.WEIGHTS.D2ITEM).categories
assert categories_item is not None
d_item = dd.D2FrcnnDetector(item_config_path, item_weights_path, categories_item, device=cfg.DEVICE)
# pdf miner
pdf_text = PdfTextDetector(_XSL_PATH)
# text detector
credentials_kwargs={"aws_access_key_id": os.environ["ACCESS_KEY"],
"aws_secret_access_key": os.environ["SECRET_KEY"],
"config": Config(region_name=os.environ["REGION"])}
tex_text = dd.TextractOcrDetector(**credentials_kwargs)
def build_gradio_analyzer():
"""Building the Detectron2/DocTr analyzer based on the given config"""
cfg.freeze(freezed=False)
cfg.TAB = True
cfg.TAB_REF = True
cfg.OCR = True
cfg.freeze()
pipe_component_list = []
layout = dd.ImageLayoutService(d_layout, to_image=True, crop_image=True)
pipe_component_list.append(layout)
nms_service = dd.AnnotationNmsService(nms_pairs=cfg.LAYOUT_NMS_PAIRS.COMBINATIONS,
thresholds=cfg.LAYOUT_NMS_PAIRS.THRESHOLDS)
pipe_component_list.append(nms_service)
if cfg.TAB:
detect_result_generator = dd.DetectResultGenerator(categories_cell)
cell = dd.SubImageLayoutService(d_cell, dd.LayoutType.table, {1: 6}, detect_result_generator)
pipe_component_list.append(cell)
detect_result_generator = dd.DetectResultGenerator(categories_item)
item = dd.SubImageLayoutService(d_item, dd.LayoutType.table, {1: 7, 2: 8}, detect_result_generator)
pipe_component_list.append(item)
table_segmentation = dd.TableSegmentationService(
cfg.SEGMENTATION.ASSIGNMENT_RULE,
cfg.SEGMENTATION.THRESHOLD_ROWS,
cfg.SEGMENTATION.THRESHOLD_COLS,
cfg.SEGMENTATION.FULL_TABLE_TILING,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS,
cfg.SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS,
cfg.SEGMENTATION.STRETCH_RULE
)
pipe_component_list.append(table_segmentation)
if cfg.TAB_REF:
table_segmentation_refinement = dd.TableSegmentationRefinementService()
pipe_component_list.append(table_segmentation_refinement)
if cfg.OCR:
d_text = dd.TextExtractionService(pdf_text)
pipe_component_list.append(d_text)
t_text = dd.TextExtractionService(tex_text,skip_if_text_extracted=True)
pipe_component_list.append(t_text)
match_words = dd.MatchingService(
parent_categories=cfg.WORD_MATCHING.PARENTAL_CATEGORIES,
child_categories=cfg.WORD_MATCHING.CHILD_CATEGORIES,
matching_rule=cfg.WORD_MATCHING.RULE,
threshold=cfg.WORD_MATCHING.THRESHOLD,
max_parent_only=cfg.WORD_MATCHING.MAX_PARENT_ONLY
)
pipe_component_list.append(match_words)
order = dd.TextOrderService(
text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER,
floating_text_block_categories=cfg.TEXT_ORDERING.FLOATING_TEXT_BLOCK,
text_block_categories=cfg.TEXT_ORDERING.TEXT_BLOCK,
include_residual_text_container=cfg.TEXT_ORDERING.TEXT_CONTAINER_TO_TEXT_BLOCK)
pipe_component_list.append(order)
pipe = dd.DoctectionPipe(pipeline_component_list=pipe_component_list)
post_processor = PostProcessor("deepdoctection", **credentials_kwargs)
post_service = PostProcessorService(post_processor)
pipe_component_list.append(post_service)
return pipe
def analyze_image(img, pdf, max_datapoints):
# creating an image object and passing to the analyzer by using dataflows
analyzer = build_gradio_analyzer()
if img is not None:
image = dd.Image(file_name=str(time.time()).replace(".","") + ".png", location="")
image.image = img[:, :, ::-1]
df = DataFromList(lst=[image])
df = analyzer.analyze(dataset_dataflow=df)
elif pdf:
df = analyzer.analyze(path=pdf.name, max_datapoints=max_datapoints)
else:
raise ValueError
df.reset_state()
layout_items_str = ""
jsonl_out = []
dpts = []
html_list = []
for dp in df:
dpts.append(dp)
out = dp.as_dict()
jsonl_out.append(out)
out.pop("_image")
layout_items = [layout for layout in dp.layouts if layout.reading_order is not None]
layout_items.sort(key=lambda x: x.reading_order)
layout_items_str += f"\n\n -------- PAGE NUMBER: {dp.page_number+1} ------------- \n"
for item in layout_items:
layout_items_str += f"\n {item.category_name}: {item.text}"
html_list.extend([table.html for table in dp.tables])
if html_list:
html = ("
").join(html_list)
else:
html = None
return [dp.viz(show_cells=False) for dp in dpts], layout_items_str, html, jsonl_out
demo = gr.Blocks(css="scrollbar.css")
with demo:
with gr.Box():
gr.Markdown("