import os os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') import deepdoctection as dd from deepdoctection.extern.model import ModelProfile from deepdoctection.analyzer.dd import build_analyzer, _auto_select_lib_and_device, _maybe_copy_config_to_cache from deepdoctection.utils.metacfg import set_config_by_yaml import gradio as gr _DD_ONE = "deepdoctection/configs/conf_dd_one.yaml" _TESSERACT = "deepdoctection/configs/conf_tesseract.yaml" dd.ModelCatalog.register("layout/model_final_inf_only.pt",ModelProfile( name="layout/model_final_inf_only.pt", description="Detectron2 layout detection model trained on private datasets", config="dd/d2/layout/CASCADE_RCNN_R_50_FPN_GN.yaml", size=[274632215], tp_model=False, hf_repo_id=os.environ.get("HF_REPO"), hf_model_name="model_final_inf_only.pt", hf_config_file=["Base-RCNN-FPN.yaml", "CASCADE_RCNN_R_50_FPN_GN.yaml"], categories={"1": dd.names.C.TEXT, "2": dd.names.C.TITLE, "3": dd.names.C.LIST, "4": dd.names.C.TAB, "5": dd.names.C.FIG}, )) def get_space_dd_analyzer(): # get a dd analyzer with a special layout model lib, device = _auto_select_lib_and_device() dd_one_config_path = _maybe_copy_config_to_cache(_DD_ONE) _maybe_copy_config_to_cache(_TESSERACT) # Set up of the configuration and logging cfg = set_config_by_yaml(dd_one_config_path) cfg.freeze(freezed=False) cfg.LIB = lib cfg.DEVICE = device cfg.TAB = True cfg.TAB_REF = True cfg.OCR = True cfg.LANG = None cfg.WEIGHTS.D2LAYOUT = "layout/model_final_inf_only.pt" cfg.freeze() return build_analyzer(cfg) def analyze_image(img): # creating an image object and passing to the analyzer by using dataflows image = dd.Image(file_name="input.png", location="") image.image = img[:,:,::-1] df = dd.DataFromList(lst=[image]) analyzer = get_space_dd_analyzer() df = analyzer.analyze(dataset_dataflow=df) df.reset_state() dp = next(iter(df)) out = dp.as_dict() out.pop("image") return dp.viz(show_table_structure=False), out inputs = [gr.inputs.Image(type='numpy', label="Original Image")] outputs = [gr.outputs.Image(type="numpy", label="Output Image"), gr.JSON()] title = "Deepdoctection - A Document AI Package" description = "Demonstration of layout analysis and output of a document page. This demo uses the deepdoctection analyzer with Tesseract's OCR engine. Models detect text, titles, tables, figures and lists as well as table cells. Based on the layout it determines reading order and generates an JSON output." examples = [['sample_1.jpg'],['sample_2.png']] gr.Interface(analyze_image, inputs, outputs, title=title, description=description, examples=examples).launch()