File size: 2,290 Bytes
71ea432
 
 
 
 
 
 
 
 
 
513af34
 
71ea432
 
 
513af34
24be325
513af34
24be325
 
 
6ac0a0d
 
513af34
 
 
 
6ac0a0d
 
 
 
 
71ea432
24be325
513af34
 
 
24be325
 
 
 
 
 
 
 
 
513af34
24be325
 
 
 
 
 
 
 
 
 
 
513af34
 
 
 
 
 
 
 
 
 
24be325
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import json

import requests

from datasets import load_dataset
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from matchmaking import *
from background_task import init_matchmaking
from apscheduler.schedulers.background import BackgroundScheduler


block = gr.Blocks()
env = [
    {
        "name": "Soccer",
        "global": None,
    },
]
matchmaking = Matchmaking()

scheduler = BackgroundScheduler()
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=60)
scheduler.start()


def update_elos():
    matchmaking.read_history()
    matchmaking.compute_elo()
    matchmaking.save_elo_data()


def get_env_data() -> pd.DataFrame:
    data = pd.read_csv(f"env_elos/elo.csv")
    # data = pd.DataFrame(columns=["user", "model", "elo", "games_played"])
    return data


with block:
    gr.Markdown(f"""
    # ๐Ÿ† The Deep Reinforcement Learning Course Leaderboard ๐Ÿ† 

    This is the leaderboard of trained agents during the Deep Reinforcement Learning Course. A free course from beginner to expert.

    This is the Soccer environment leaderboard, use Ctrl+F to find your rank ๐Ÿ†

    We use an ELO rating to sort the models.
    You **can click on the model's name** to be redirected to its model card which includes documentation.

    ๐Ÿค– You want to try to train your agents? <a href="http://eepurl.com/ic5ZUD" target="_blank">Sign up to the Hugging Face free Deep Reinforcement Learning Course ๐Ÿค— </a>.

    You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo ๐Ÿ‘€ </a>.

    ๐Ÿ”ง There is an **environment missing?** Please open an issue.
    """)

    with gr.Row():
        refresh_data = gr.Button("Refresh")
        val = gr.Variable(value=[env["name"]])
        refresh_data.click(get_env_data, inputs=[val], outputs=env["global"])
    with gr.Row():
        env["global"] = gr.components.DataFrame(
            get_env_data(),
            headers=["Ranking ๐Ÿ†", "User ๐Ÿค—", "Model id ๐Ÿค–", "ELO ๐Ÿš€", "Games played ๐ŸŽฎ"],
            datatype=["number", "markdown", "markdown", "number", "number"]
        )

block.launch()