Spaces:
Runtime error
Runtime error
File size: 2,290 Bytes
71ea432 513af34 71ea432 513af34 24be325 513af34 24be325 6ac0a0d 513af34 6ac0a0d 71ea432 24be325 513af34 24be325 513af34 24be325 513af34 24be325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import json
import requests
from datasets import load_dataset
import gradio as gr
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from matchmaking import *
from background_task import init_matchmaking
from apscheduler.schedulers.background import BackgroundScheduler
block = gr.Blocks()
env = [
{
"name": "Soccer",
"global": None,
},
]
matchmaking = Matchmaking()
scheduler = BackgroundScheduler()
scheduler.add_job(func=init_matchmaking, trigger="interval", seconds=60)
scheduler.start()
def update_elos():
matchmaking.read_history()
matchmaking.compute_elo()
matchmaking.save_elo_data()
def get_env_data() -> pd.DataFrame:
data = pd.read_csv(f"env_elos/elo.csv")
# data = pd.DataFrame(columns=["user", "model", "elo", "games_played"])
return data
with block:
gr.Markdown(f"""
# ๐ The Deep Reinforcement Learning Course Leaderboard ๐
This is the leaderboard of trained agents during the Deep Reinforcement Learning Course. A free course from beginner to expert.
This is the Soccer environment leaderboard, use Ctrl+F to find your rank ๐
We use an ELO rating to sort the models.
You **can click on the model's name** to be redirected to its model card which includes documentation.
๐ค You want to try to train your agents? <a href="http://eepurl.com/ic5ZUD" target="_blank">Sign up to the Hugging Face free Deep Reinforcement Learning Course ๐ค </a>.
You want to compare two agents? <a href="https://huggingface.co/spaces/ThomasSimonini/Compare-Reinforcement-Learning-Agents" target="_blank">It's possible using this Spaces demo ๐ </a>.
๐ง There is an **environment missing?** Please open an issue.
""")
with gr.Row():
refresh_data = gr.Button("Refresh")
val = gr.Variable(value=[env["name"]])
refresh_data.click(get_env_data, inputs=[val], outputs=env["global"])
with gr.Row():
env["global"] = gr.components.DataFrame(
get_env_data(),
headers=["Ranking ๐", "User ๐ค", "Model id ๐ค", "ELO ๐", "Games played ๐ฎ"],
datatype=["number", "markdown", "markdown", "number", "number"]
)
block.launch()
|